Трансформаторы тока. виды и устройство. назначение и работа

Из чего состоит ТТ, принцип его работы

Трансформатор тока имеет замкнутый сердечник (магнитопровод), который собирают из листов электротехнической стали. На сердечнике расположено две обмотки: первичная и вторичная.

Первичная обмотка включается последовательно (в рассечку) цепи, по которой течет измеряемый (первичный) ток. К вторичной обмотке присоединяются последовательно соединенные реле, приборы, которые образуют вторичную нагрузку трансформатора тока. Такое описание состава трансформатора тока достаточно для описания принципа его работы, более подробное описание реального состава трансформатора тока приведено в другой статье.

Для рассмотрения принципа действия трансформатора тока рассмотрим схему, расположенную на рисунке.

В первичной обмотке протекает ток I1, создавая магнитный поток Ф1. Переменный магнитный поток Ф1 пересекает обе обмотки W1 и W2. При пересечении вторичной обмотки поток Ф1 индуцирует электродвижущую силу Е2, которая создает вторичный ток I2. Ток I2, согласно закону Ленца имеет направление противоположное направлению I1. Вторичный ток создает магнитный поток Ф2, который направлен встречно Ф1. В результате сложения магнитных потоков Ф1 и Ф2 образуется результирующий магнитный поток (на рисунке он обозначен Фнам). Этот поток составляет несколько процентов от потока Ф1. Именно поток Фнам и является тем звеном, что производит передачу и трансформацию тока. Его называют потоком намагничивания.

Коэффициент трансформации идеального ТТ

В первичной обмотке w1 создается магнитодвижущая сила F1=w1*I1, а во вторичной – F2=w2*I2. Если принять, что в трансформаторе тока отсутствуют потери, то магнитодвижущие силы равно по величине, но противоположны по знаку. F1=-F2. В итоге получаем, что I1/I2=w2/w1=n. Это отношение называется коэффициентом трансформации трансформатора тока.

Коэффициент трансформации реального ТТ

В реальном трансформаторе тока существуют потери энергии. Эти потери идут на:

  • создание магнитного потока в магнитопроводе
  • нагрев и перемагничивание магнитопровода
  • нагрев проводов вторичной обмотки и цепи

К магнитодвижущим силам из прошлого пункта прибавится мдс намагничивания Fнам=Iнам*w1. В выражении ниже токи и мдс это вектора. F1=F2+Fнам или I1*w1=I2*w2+Iнам*w1 или I1=I2*(w2/w1)+Iнам

В нормальном режиме, когда первичный ток не превышает номинальный ток трансформатора тока, величина тока Iнам не превышает 1-3 процента от первичного тока, и этой величиной можно пренебречь. При ненормальных режимах происходит так называемый бросок тока намагничивания, об этом более подробно можно почитать здесь. Из формулы следует, что первичный ток разделяется на две цепи – цепь намагничивания и цепь нагрузки. Более подробно о схеме замещения ТТ и о векторной диаграмме ТТ.

МАРКИРОВКА ТОКОВЫХ ТРАНСФОРМАТОРОВ

Условное обозначение устройств отечественного производства осуществляется в соответствии с нормативной документацией и техническими условиями ми (ТУ).

Она имеет следующий вид:

ТNM — X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 XY12 X13 X14, где

  • Т — первая буква в обязательном порядке «Т» означает, что устройства относятся к трансформаторным;
  • N — конструкционные особенности устройства: проходной (П), опорный (О), с использованием шины в качестве первичной обмотки (Ш), с фарфоровой изоляцией корпуса (Ф);
  • M — материал изоляции обмоток: «М» — масляная (фактически, смешанная бумажно-масляная изоляция), «Л» — литая (эпоксидная смола), «Г» – газовая;
  • Х1 — значение рабочего (номинального) напряжения;
  • Х2 — вариант конструкционного исполнения. Как правило, касается расположения контактов первичной и вторичной обмоток как;
  • Х3 — габаритные размеры корпуса. Чаще всего, эта маркировка применяется для трансформаторов, устанавливаемых в силовых шкафах. Код привязывают к длине корпуса;
  • Х4 — буквенный код определяющий расположение выводов вторичной катушки относительно установочного основания. «А» — параллельно установочной поверхности, «Б» — перпендикулярно относительно установочной поверхности;
  • Х5 — наличие и тип изолирующих барьеров;
  • Х6 – значение точности при передаче данных, внешняя цепь;
  • Х7 — коэффициента безопасности для исходящих катушек (измерительные цепи);
  • Х8 – значение точности для исходящих катушек (измерительные цепи);
  • Х9 — коэффициент кратности;
  • Х10 – рабочее значение нагрузки для устройств измерения;
  • Х11 — рабочее значение нагрузки для устройств защиты;
  • Х12 — значение входящего и исходящего тока;
  • Х14 — максимальное значение силы тока при односекундном воздействии короткого замыкания на пределе термической стойкости;
  • Х15 — климатическое исполнение оборудования.

ОБЛАСТЬ ИСПОЛЬЗОВАНИЯ И ОСОБЕННОСТИ ПОДКЛЮЧЕНИЯ

Трансформаторы тока используется для преобразования параметров электроэнергии первичных цепей высокого напряжения. Они выполняют две основные функции:

1. Приведение характеристик тока к величинам, которые могут использовать различные электроприборы: счетчики, измерительные устройства, защитные реле.

2. Физическая отделение (изоляция) исполнительных устройств, подключенных измерительным и защитным цепям, от высоковольтных кабелей линий электропередач.

ПОДКЛЮЧЕНИЕ СЧЕТЧИКА ЧЕРЕЗ ТРАНСФОРМАТОР ТОКА

Так как подсоединять измерительные устройства к первичной цепи питания прямым включением нельзя используются ТТ, с соответствующим коэффициентом трансформации. К примеру, для выполнения учета потребления электроэнергии на линии с нагрузкой в 400А необходимо использовать трансформатор тока с рабочими показателями не менее 400/5.

Подсоединение трансформаторов осуществляется на подстанции потребителя. Первичная катушка подключается к силовым контактам фаз (А и С) так называемая «схема неполной звезды». К контактам вторичной обмотки подключается электросчетчик и амперметр. К примеру, модели САЗУ-ИТ и Э378 в щитовом исполнении.

READ  Электрические лифты

ПОДКЛЮЧЕНИЕ ЧЕРЕЗ ТРАНСФОРМАТОРЫ ТОКА РЕЛЕЙНОЙ ЗАЩИТЫ

К примеру, необходимо установить релейную защиту на первичной (входящей) электроцепи с параметрами тока: напряжение 10 кВ и нагрузкой 1 кА. При таких показателях релейная защита не может быть включена в электроцепь напрямую напрямую.

Для подключения рекомендуется использовать трансформаторы тока модель ТПЛ-10 с коэффициентом трансформации 1000/5 при использовании токовых реле и ТТ — НТМИ-10с коэффициентом трансформации 1000/100 для подключения реле напряжения.

Также через этот тип трансформатора допускается подключение электросчетчика.

На отечественных предприятиях и бытовых подстанциях чаще всего встречаются проходные трансформаторы тока с двумя вторичными обмотками, которые используются для учета потребления электроэнергии и установки релейной защиты соответственно.

  *  *  *

2014-2020 г.г. Все права защищены.Материалы сайта имеют ознакомительный характер и не могут использоваться в качестве руководящих и нормативных документов.

Особенности монтажа

Монтаж измерительных трансформаторов производится высококвалифицированными специалистами, которые обязаны иметь категорию допуска к электротехническим работам не ниже третьего уровня. Перед установкой необходимо провести проверку на выявление возможных дефектов.

Для трансформаторов тока рекомендуется произвести следующие действия:

  • визуальный осмотр корпуса на предмет механических повреждений;
  • проверка коэффициента трансформации на соответствие заданным параметрам;
  • состояние вторичной обмотки (отсутствие обрывов);
  • правильно ли промаркированы все выводы для подключения к источнику питания и контрольно-измерительной аппаратуре;
  • целостность фарфоровой покрышки и токоведущего стержня.

После визуального осмотра можно переходить к процессу установки и дальнейшего введения в эксплуатацию.

Для трансформаторов напряжения также проводят визуальный осмотр перед установкой.

Обращают внимание на следующие моменты:

  • целостность корпуса;
  • отсутствие течи масла;
  • предварительное испытание измерительных трансформаторов (определяют полярность у выводов для низшего и высшего напряжения, измеряют коэффициент трансформации, проверяют величину сопротивления обмоток);
  • проверка уровня масла. В больших устройствах количества масла определяют по специальному индикатору, а в компактных изделиях без расширителя не доливают масла примерно на 2-3 сантиметра до крышки. Образовавшийся воздушный карман и будет играть роль расширителя.

Все монтажные и пусковые работы проводятся в соответствии с указаниями изготовителя и с соблюдением правил безопасности.

Разновидности конструкций

Измерительные токовые трансформаторы выпускаются различных типов. Все они имеют одно и то же назначение, но отличаются составными элементами и принципом действия. Каждая разновидность применяется для достижения определённых целей, что позволяет выбирать оптимальный вариант для каждого случая.

Катушечного типа

Этот вид измерительных трансформаторов считается наиболее простым по конструкции. Свою популярность он приобрёл ещё в советские времена, когда не было более качественных и эффективных устройств. Состоит катушечный прибор из следующих элементов:

  • защитный корпус;
  • вторичная и первичная обмотка;
  • клеммная колодка;
  • контакты;
  • восьмёрочная или петлевая обмотка.

К ним относят:

  • низкое разрядное напряжение, которое становится следствием слабой катушечной изоляции;
  • возможность использования только при небольших номинальных напряжениях (не более 3 кВ);
  • способность работать только при пониженных требованиях к электрической прочности.

Проходной трансформатор

Эти устройства считаются наиболее часто используемыми. Они нашли широкое применение в различных распределительных приборах, рассчитанных на напряжение от 6 до 35 кВ. Их устройство не отличается особой сложностью.

Конструкция состоит из таких частей:

  • литой эпоксидный корпус;
  • магнитопровод;
  • первичная обмотка;
  • вторичная обмотка.

Трансформаторы этого типа ценятся за то, что дают возможность в закрытых распределительных устройствах сэкономить проходной изолятор. Среди других преимуществ прибора выделяют такие:

  • малые габариты;
  • высокая электродинамическая стойкость.

Стержневое устройство

Стержневые трансформаторы часто называют одновитковыми. Главная их особенность — увеличение точности при повышении силы тока и уменьшение — при понижении. Она обусловлена тем, что первичная обмотка только один раз проходит через отверстие сердечника, что приводит к численному равенству количества ампер-витков и номинального тока.

Устройство состоит из следующих деталей:

  • железный магнитопровод (сердечник);
  • стержень проходного изолятора;
  • вторичная и первичная обмотка.

Шинный прибор

Шинные трансформаторы представляют собой изделия, в конструкцию которых входят сердечники со вторичной обмоткой, а первичная — отсутствует. В главной изоляции прибора предусмотрено специальное отверстие, через которое пропускается шина распределительного устройства, выполняющая роль первичной обмотки.

Эта разновидность трансформатора очень похожа на стержневую. Лишь при малых показаниях напряжения через отверстие в сердечнике прокладывают несколько витков проводника, что даёт возможность получить многовитковую конструкцию прибора.

Основными преимуществами шинного трансформатора считаются:

  • простота конструкции;
  • лёгкость проведения монтажных, ремонтных и профилактических работ;
  • возможность использовать устройство не только при малых номинальных токах, но и при высоких (более 2 тыс. ампер);
  • высокая электродинамическая стойкость, обусловленная устойчивостью шинной конструкции.

Для чего предназначен трансформатор тока

Вторичные обмотки трансформатора тока (не менее одной на каждый магнитопровод) обязательно нагружаются. Сопротивление нагрузки строго регламентировано требованиями к точности коэффициента трансформации. Незначительное отклонение сопротивления вторичной цепи от номинала (указанного на табличке) по модулю полного Z или cos ф (обычно cos = 0.8 индукт.) приводит к изменению погрешности преобразования и возможно ухудшению измерительных качеств трансформатора. Значительное увеличение сопротивления нагрузки создает высокое напряжение во вторичной обмотке, достаточное для пробоя изоляции трансформатора, что приводит к выходу трансформатора из строя, а также создает угрозу жизни обслуживающего персонала. Кроме того, из-за возрастающих потерь в сердечнике магнитопровод трансформатора начинает перегреваться, что так же может привести к повреждению (или, как минимум, к износу) изоляции и дальнейшему её пробою. Полностью разомкнутая вторичная обмотка ТТ не создает компенсирующий магнитный поток в сердечнике, что приводит к перегреву магнитопровода и его выгоранию. При этом магнитный поток, созданный первичной обмоткой имеет очень высокое значение и потери в магнитопроводе сильно нагревают его.

READ  Секреты бессвинцовой пайки

Коэффициент трансформации измерительных трансформаторов тока является их основной характеристикой. Номинальный (идеальный) коэффициент указывается на шильдике трансформатора в виде отношения номинального тока первичной (первичных) обмоток к номинальному току вторичной (вторичных) обмоток, например, 100/5 А или 10-15-50-100/5 А (для первичных обмоток с несколькими секциями витков). При этом реальный коэффициент трансформации несколько отличается от номинального. Это отличие характеризуется величиной погрешности преобразования, состоящей из двух составляющих – синфазной и квадратурной. Первая характеризует отклонение по величине, вторая отклонение по фазе вторичного тока реального от номинального. Эти величины регламентированы ГОСТами и служат основой для присвоения трансформаторам тока классов точности при проектировании и изготовлении. Поскольку в магнитных системах имеют место потери связанные с намагничиванием и нагревом магнитопровода, вторичный ток оказывается меньше номинального (т.е. погрешность отрицательная) у всех трансформаторов тока. В связи с этим для улучшения характеристик и внесения положительного смещения в погрешность преобразования применяют витковую коррекцию. А это означает, что коэффициент трансформации у таких откорректированных трансформаторов не соответствует привычной формуле соотношений витков первичной и вторичной обмоток.

Устройство трансформаторов

Практически все модификации трансформаторов такого типа оснащаются магнитопроводами, которые снабжаются вторичной обмоткой. Последняя нагружается при эксплуатации в соответствии с регламентными величинами в показателях сопротивления

Соблюдение определенных нагрузочных показателей важно для последующей точности измерения. Разомкнутая обмотка не может создавать компенсации магнитных потоков в сердечнике, что способствует перегреву магнитопровода, а в некоторых случаях — и его сгоранию

В то же время магнитный поток, формируемый обмоткой первичного ряда, отличается более высокими рабочими характеристиками, что также может способствовать перегреву магнитного провода и его сердечника. Надо сказать, что токопроводящая инфраструктура формирует общую систему, на которой базируются трансформаторы тока и напряжения. Назначение электротехнического агрегата в данном случае не имеет принципиального значения – особенности функционирования обуславливаются скорее применяемыми материалами. В случае с преобразователями тока, например, сердечник магнитопровода изготавливается из аморфных нанокристаллических сплавов. Такой выбор связан с тем, что конструкция получает возможность работы с более широким диапазоном технико-эксплуатационных величин в зависимости от класса точности.

Классификация трансформаторов тока

Трансформаторы тока классифицируются по различным признакам:

1. По назначению трансформаторы тока можно разделить на измерительные, защитные, промежуточные (для включения измерительных приборов в токовые цепи релейной защиты, для выравнивания токов в схемах дифференциальных защит и т. д.) и лабораторные (высокой точности, а также со многими коэффициентами трансформации).

2. По роду установки различают трансформаторы тока: а) для наружной установки (в открытых распределительных устройствах); б) для закрытой установки; в) встроенные в электрические аппараты и машины: выключатели, трансформаторы, генераторы и т. д.; г) накладные – надевающиеся сверху на проходной изолятор (например, на высоковольтный ввод силового трансформатора); д) переносные (для контрольных измерений и лабораторных испытаний).

3. По конструкции первичной обмотки трансформаторы тока делятся на:

а) многовитковые (катушечные, с петлевой обмоткой и с восьмерочной обмоткой); б) одновитковые (стержневые); в) шинные.

4. По способу установки трансформаторы тока для закрытой и наружной установки разделяются на:

а) проходные; б) опорные.

5. По выполнению изоляции трансформаторы тока можно разбить на группы: а) с сухой изоляцией (фарфор, бакелит, литая эпоксидная изоляция и т. д.); б) с бумажно-масляной изоляцией и с конденсаторной бумажно-масляной изоляцией; в) газонаполненные (элегаз); в) с заливкой компаундом.

6. По числу ступеней трансформации имеются трансформаторы тока:

а) одноступенчатые; б) двухступенчатые (каскадные).

7. По рабочему напряжению различают трансформаторы:

а) на номинальное напряжение свыше 1000 В; б) на номинальное напряжение до 1000 В.

Вы здесь

Принцип работы трансформаторов тока

1.3 Принцип работы Трансформатор тока состоит из замкнутого сердечника, набранного из тонких листов электротехнической стали, и двух обмоток — первичной и вторичной. Первичную обмотку включают последовательно в контролируемую цепь, ко вторичной обмотке присоединяют токовые катушки различных приборов и реле. Рисунок 1 – Трансформатор тока: а — устройство, б, в — схемы включения амперметра непосредственно в контролирующую цепь и через трансформатор тока Устройство трансформатора тока и схемы включения амперметра показаны на рисунке 1, а—в. Магнитный поток в магнитопроводе 3 создается токами первичной 1 и вторичной 2 обмоток. Соотношение первичного I1 и вторичного I2 токов определяется формулой: KТТ = I1/I2 = w2/wl , где KТТ — коэффициент трансформации; w1 и w2 — число витков первичной и вторичной обмоток. Если в силовых трансформаторах и трансформаторах напряжения увеличение сопротивления во вторичной цепи вызывает уменьшение тока во вторичной и в первичной цепях, а напряжение на выводах обеих обмоток почти не изменяется, то у трансформаторов тока увеличение сопротивления во вторичной цепи приводит к повышению напряжения на выводах вторичной обмотки. Это объясняется тем, что ток в первичной цепи не зависит от нагрузки трансформатора тока. Ток во вторичной цепи трансформатора тока практически не меняется с изменением ее сопротивления при данном режиме первичной цепи. Вследствие этого нагрузка трансформатора тока увеличивается с возрастанием сопротивления во вторичной цепи, складывающегося из сопротивлений, подключенных к трансформатору тока аппаратов и приборов, соединительных проводов и переходных контактов. Трансформаторы тока для электроустановок напряжением до 1000 В показаны на рисунке 2, а, б, в (катушечный, шинный ТШ-0,5 и шинный с литой изоляцией ТШЛ-0,5). В шинных трансформаторах тока в качестве первичной обмотки используют шину, пропускаемую через окно 5 сердечника трансформатора тока, на который намотана вторичная обмотка. Проходные трансформаторы тока для внутренней установки на напряжение 10 кВ выполняют многовитковыми, одновитковыми и шинными с фарфоровой и пластмассовой (литой) изоляцией (Рисунок 3, а—в). Опорный трансформатор тока ТФНД-220 для наружной установки на напряжение 220 кВ (Рисунок 4) имеет обмотки, помещенные в фарфоровый корпус 3, залитый маслом и укрепленный на основании 4. На верхнем торце фарфорового корпуса укреплен чугунный расширитель 1 для масла с маслоуказателем и зажимами 2 первичной обмотки. Сердечник с вторичной обмоткой охватывается первичной обмоткой, имеющей в этом месте форму кольца. Выводы вторичной обмотки размещены в коробке 5 на основании трансформатора. Рисунок 2 – Трансформаторы тока на напряжение до 1000 В: а — катушечный, б, в — шинные ТШ-0,5 и ТШЛ-0,5; 1 — каркас, 2, 4 — зажимы вторичной и первичной обмоток, 3 — защитный кожух, 5 — окно

READ  Электрические приводы. виды и устройство. применение и работа

Рисунок 3 – Трансформаторы тока на напряжение 10 кВ с литой изоляцией: а — многовитковый ТПЛ-10, б — одновитковый ТПОЛ-10, в —шинный ТПШЛ-10; 1, 2 — зажимы первичной и вторичной обмоток, 3 — литая изоляция, 4 — установочный угольник, 5 — сердечник

Рисунок 4 – Опорный трансформатор тока ТФНД-220 наружной установки В высоковольтных распределительных устройствах подстанций применяют проходные (Рисунок 5, а) и опорные (Рисунок 5, б) трансформаторы тока. Рисунок 5 – Трансформаторы тока: а — проходной ТПФМ-10 на 10 кВ, б — опорный ТФН-35М на 35 кВ; 1 и 3 — первичная и вторичная обмотки, 2 — фарфоровый изолятор, 4 — сердечник вторичной обмотки, 5 — контактный угольник, 6 — крышка, 7 — кожух, 8 — верхний фланец, 9 — зажимы выводов вторичной обмотки, 10 — якореобразный болт, 11 — крышка, 12 — фарфоровая покрышка, 13 — изоляционное масло, 14 — кольцевые обмотки («восьмеркой»), 15 — полухомут, 16 — масловыпускатель, 17 — цоколь, 18 — коробка вторичных выводов, 19 — кабельная муфта, 20 — маслоуказатель

Меню — ДИПЛОМКА

  • Главная страница
  • Карта сайта
  • Чертежи Карты Дипломки
  • Материалы для дипломных
  • Дипломные от пользователей
  • Форум DIPLOMKA.NET
  • Полезные ссылки
  • Объявления — дипломнику
  • Новости сайта
  • Список литературы
  • Фото для дипломных
  • Оставить отзыв
  • Обратная связь

Материалы для дипломных работ

  • Методические указания
  • Введение
  • Техническое описание оборудования связи
  • Монтаж оборудования связи
  • ТО оборудования связи
  • Ремонт оборудования связи
  • Техническое описание электрооборудования
  • Монтаж электрооборудования
  • Эксплуатация электрооборудования
  • Техническое обслуживание
  • Ремонт электрооборудования
  • Техника безопасности

Трансформаторы напряжения – назначение и принцип действия

Они встречаются везде, где присутствует необходимость преобразовать высокое напряжение сети в пропорционально более низкое значение. В этом и есть их назначение: преобразование величины напряжения. ТН-ы используют для:

  • уменьшения величины напряжения до величины, которую безопасно и удобно использовать в цепях измерения (вольтметры, ваттметры, счетчики), защиты, автоматики, сигнализации
  • защиты от высокого напряжения вторичных цепей, а следовательно и человека
  • повышения напряжения при испытаниях изоляции различного эо
  • на подстанциях ТН используют для контроля изоляции сети, работы в составе устройства сигнализации или защиты от замыканий на землю

Если бы не существовало трансформаторов напряжения, то, например, чтобы измерить напряжение на шине 10кВ, пришлось бы сооружать супермощный вольтметр с изоляцией, выдерживающей 10кВ. А это уже габариты ого-го. А ещё плюс к этому необходимо соблюсти точность измерений. Проблемка, но и это не всё. Если в таком приборе что-то коротнет, то электрик ошибается однажды…. при выборе профессии. 10кВ, а ведь есть и 750кВ, как там померить? Загвоздочка. Поэтому отдаем почести изобретателям трансформаторов, и в частности трансформаторов напряжения. Отвлеклись, продолжаем.

Прежде, чем двигаться дальше, нарисую однофазный ТН, чтобы было наглядно и более понятнее далее в изложении материала.

Значит на рисунке сверху у нас приходит напряжение на выводы А, Х трансформатора напряжения на первичную обмотку(1). Это напряжение номинальное напряжение, первичное напряжение. Далее оно трансформируется до величины вторичного напряжения, которое находится на вторичной обмотке (3). Выводы вторичной обмотки – а, х. Вывод вторичной обмотки заземляются. В – это вольтметр, но это может быть и другое устройство. (2) – это магнитопровод ТНа.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: