Плавный пуск ламп накаливания

Параллельное соединение ламп.

Параллельным соединением называют такое соединение, где все элементы электрической цепи, в данном случае лампы накаливания, находятся под одним и тем же напряжением. То есть получается, что каждая лампа, своими контактами, подключена и к фазе и к нулю. И если перегорит любая из ламп, то остальные будут гореть. Именно такое соединение ламп, рассчитанных на напряжение питания 220В, используется в домашнем быту, и не только.

На следующем рисунке так же изображено параллельное соединение. Здесь все три лампы соединены в одном месте. Еще такое соединение называют «звезда»

Бывают моменты, что когда именно из одной точки нужно развести проводку в разные направления.

Кстати, именно «звездой» делают разводку по квартире при монтаже розеток.

Ну вот в принципе и все. И как всегда по традиции ролик о последовательном и параллельном подключении ламп

Теперь я думаю, у Вас не должно возникнуть проблем с последовательным и параллельным соединением ламп.
Удачи!

Использование электронного балласта для подключении люминесцентных ламп

На сегодняшний день подобные схемы подключения светильников c лампами дневного света наиболее распространены. Они лишены тех недостатков, которые присущи работе светильников c применением электромагнитного балласта. Среди преимуществ – такие схемы не требует наличия стартера.

Современные электронные балласты дают возможность экономить электроэнергию, увеличить срок работы светильников. При этом свет при таких схемах подключения в отличие от схем с использованием дросселей, не мигающий эффект стробоскопа отсутствует. Это достигается благодаря тому, что рабочее напряжение для ламп имеет частоту, отличную от частоты в сетях – до 133 kGz.

Применение микросхем позволило значительно снизить вес пусковых устройств, уменьшить их габариты. Это дало возможность непосредственно встраивать балласт непосредственно в цоколь лампы, предложить потребителям люминесцентные лампы, которые можно прямо вкручивать в обычный патрон подобно лампочке накаливания.

Использование микросхем дало возможность обеспечить плавный нагрев электродов в лампах, а это не только повышает эффективность их работы, но и значительно удлиняет время эксплуатации.

Электронный балласт дает возможность применять люминесцентные лампы совместно c устройствами, которые предназначены для плавной регулировки освещенности – диммерам.

К достоинствам светильников, в которых применяется такая схема можно отнести нанесение изображения порядка подключения контактов на устройство, что делает такие приборы очень удобными для пользователей, которые не являются электриками-профессионалами.

Замена лампы

Если отсутствует свет и причина проблемы лишь в том, чтобы заменить перегоревшую лампочку, действовать нужно следующим образом:

Разбираем светильник

Делаем это осторожно, чтобы не повредить прибор. Поворачиваем трубку по оси

Направление движения указано на держателях в виде стрелочек.
Когда трубка повернута на 90 градусов, опускаем ее вниз. Контакты должны выйти через отверстия в держателях.
Контакты новой лампочки должны находиться в вертикальной плоскости и попадать в отверстие. Когда лампа установлена, поворачиваем трубку в обратную сторону. Остается лишь включить электропитание и проверить систему на работоспособность.
Завершающее действие — монтаж рассеивающего плафона.

Простая схема для сборки своими руками

Ниже приведенная схема проста в сборке, надежна и примечательна тем, что разработана не только для плавного включения ламп накаливания на 220В, но и для их плавного отключение. А также стоит отметить, что задержка вспышки и затухания задаётся на стадии сборки по собственному усмотрению.

Схема

Принципиальная схема плавного включения ламп накаливания приведена на рисунке ниже. В её основе лежит микросхема КР1182ПМ1 (DIP8), внутри которой размещены два тиристора и две системы управления к ним. Конденсатор С3 и резистор R2 задают длительность плавного включения и выключения соответственно. Симистор VS1 необходим для разделения силовой и управляющей части, а резистор R1 задаёт ток управляющего электрода. С1, С2 – внешние конденсаторы, необходимые для управления работой тиристоров внутри КР1182ПМ1. Цепочка R4, С4 защищает элементы схемы от сетевых помех.

Принцип работы

В исходном положении контакты выключателя SA1 должны быть замкнуты. Этот нюанс следует учитывать во время подключения платы к настенному выключателю. В момент размыкания контактов SA1 конденсатор С3 начинает набирать ёмкость, тем самым запуская в работу системы управления тиристорами. На выходе ИМС через резистор R1 происходит постепенное нарастание тока, который управляет работой силового ключа. Результатом работы системы управления является плавный пуск симистора VS1 и последовательно с ним включённой лампочки EL1.

Скорость нарастания тока на управляющем электроде зависит от номинала конденсатора С3. Чтобы лампа постепенно зажигалась в течение 3 секунд, ёмкость С3 должна составлять 100 мкФ. Для увеличения времени до 10 секунд придётся установить С3 на 470 мкФ. Длительность мягкого отключения задаётся резистором R2. Рекомендуется начать подбор с номинала в 2 кОм.

Печатная плата и детали сборки

  • DA1 – КР1182ПМ1;
  • С1,С2 – 1 мкФ-16В (полярный);
  • С3 – 470 мкФ-16В (полярный);
  • С4 – 0,1 мкФ-630В (неполярный);
  • R1 – 470 Ом-0,25 Вт±5%;
  • R2 – 3 кОм-0,25 Вт±5%;
  • R4 – 51 Ом-0,25 Вт±5%;
  • VS1 – КУ208Г.

Использование устройств, обеспечивающих плавное включение ламп накаливания, приносит пользу людям уже несколько десятков лет. С помощью УПВЛ срок службы лампочек с нитью накала увеличивается как минимум на 40%. Что касается приведенной выше схемы, то ее работоспособность и безотказность проверена на собственном опыте.

Как изготовить блок защиты самостоятельно

Для создания блока можно применить следующую схему.

Самодельный блок защиты для плавного включения ламп накаливания

Устройство работает по следующему принципу:

  1. Сначала полевой транзистор закрыт. На него идет стабилизационное напряжение. Лампа не горит;
  2. При поступлении напряжение от резистора R1 и диода VD 1 конденсатор С1 заряжается до 9,1 В. Это максимальный уровень, который ограничивается параметрами стабилитрона;
  3. Когда заданное напряжение достигнуто, транзистор постепенно открывается, а сила тока увеличивается. На стоке напряжение понизится. Нить накаливания лампы начнет плавно разжигаться;
  4. Второй резистор контролирует степень разрядки конденсатора. За счет этого резистора конденсатор может продолжить разряжаться и после выключения питания.
READ  Системы электроснабжения: ждать нельзя модернизировать

Важно! Проводить самостоятельную установку любых электроустройств необходимо с точным соблюдением нормативов правил безопасности. Использование данного блока защиты позволяет не только осуществлять плавный пуск ламп накаливания, но и предохранить их от неприятного мерцания во время работы светильника

Использование данного блока защиты позволяет не только осуществлять плавный пуск ламп накаливания, но и предохранить их от неприятного мерцания во время работы светильника.

Использование диммирования

Плавное включение ламп накаливания также может быть выполнено диммерами или светорегуляторами. Название диммер произошло от английского «dim», что означает затемнять. Здесь уровень подачи напряжения регулируется автоматическим или механическим (за счет вращения ручки) способом. У простых диммеров схема управления построена на реостате – переменном резисторе. Сейчас для этих целей используются полупроводниковые симмисторные или транзисторные ключи. В современной электротехнике для плавного включения ламп накаливания 220 Вт преимущественно используются приборы с таймером, сенсором или на дистанционном управлении. Обычно светорегуляторы устанавливаются вместо штатного выключателя.

Важно! При установке диммера на лампы накаливания добиться экономии электроэнергии невозможно. Понижение уровня освещенности на 50 процентов экономит только 15% электричества

Схема подключения диммера

В роторных диммерах накал галогеновых ламп регулируется при повороте ручки потенциометра. В электронных – все параметры задаются автоматически.

Дополнительная информация. Диммер может создавать помехи в работе чувствительных измерительных устройств и радиоприёмников. Использование прибора иногда вызывает дополнительный фон при работе звукозаписывающего оборудования. Все это надо учесть при монтаже устройств.

Собрать простой регулятор можно своими руками.

Схема состоит из:

  • BT134 – симистора на 700 В, который можно заменить на КУ208Г, MAC212-8, MAC8S, BT138 или BT136;
  • DB3 – динистора, также можно использовать КН102, HT40 HT34, HT32, DC34, DB4;
  • неполярного конденсатора с емкостью от 0,1 до 0,22 мкФ (250 В);
  • резистора (10 кОм) с максимальной мощностью от 0,25 до 2 Вт;
  • компактного переменного резистора (уровень сопротивления примерно 500 кОм);
  • проводов для соединения с основной схемой.

Самодельная схема регулятора яркости

Собранное устройство последовательно устанавливают в нулевую фазу провода, идущего к светильнику. Симистор пропускает ток только при определенной разности потенциалов. Накопление заряда идет на конденсаторе, который подключен к симистору. При этом скорость заряда определяется уровнем сопротивления переменного резистора. Сам же уровень этого сопротивления задается пользователем. Чем меньше сопротивление переменного резистора, тем ярче горит лампа.

Достоинством данного самодельного устройства является то, что при работе не происходит падения уровня напряжения, и освещенность не страдает. С другой стороны, плавный пуск галогенной лампы достигается за счет механического поворота симистора, отрегулировать скорость которого сложно. Точные параметры можно задать только на современных автоматических приборах, собрать которые своими руками сложнее.

При выборе диммерного устройства для плавного включения лампы накаливания необходимо учесть, что некоторые виды оборудования начинают работу с минимального значения, когда нить накаливания слегка тлеет. Другие сразу дают существенный скачок, который также приводит к большому перепаду напряжения на лампе.

Использование диммера может привести к повышению уровня магнитострикции и появлению высокочастотного свиста или шума, идущего от лампы накаливания. Это явление характерно для мощных ламп накаливания. Если светильники работают без диммера, то дополнительного звука практически неслышно.

Подключение с использованием блока защиты

Схематическое подсоединение к сети блока защиты не вызовет труда при монтаже устройства. Подключается прибор двумя различными методами, что напрямую зависит от напряжения применяемых лампочек.

Если в осветительных приборах используются лампы на 220 В, блок защиты подсоединяется в цепь последовательным образом. Полярность проводки значения не имеет, главное – блок должен быть подключён в разрыв провода с фазой, то есть последовательно с выключателем.

Если применяемые лампы обладают меньшим напряжением (6 -24 В) и подсоединены к сети посредством понижающего трансформатора, блок защиты нужно подсоединять со стороны прихода 220 В.

Принцип работы

Свечение обычной лампочки накаливания происходит за счет нагрева металла. Вольфрамовая нить при пропускании электрического тока мгновенно раскаляется и начинает светиться. Так как все происходит мгновенно, то нить накаливания меняет свою температуру на сотни градусов за сотые доли секунды, а её сопротивление падает в десятки раз. Это приводит к деградации и перегоранию нити. Если же замедлить процесс нагрева, то можно увеличить срок службы в несколько раз.

Блок питания

Чтобы достичь замедления обычно используют схему с конденсаторами. В момент включения устройства в сеть разряженные конденсаторы будут уменьшать нагрузку на лампочку. Когда конденсатор заряжается полностью, нагрузка растет и лампочка получает полное напряжение. В момент выключения питания конденсаторы начинают разряжаться и поддерживать напряжение, за счет этого нить перестает светиться не мгновенно, а плавно гаснет за несколько секунд.

Уменьшая напряжения и создавая плавное нарастание тока в цепи, устройство позволяет уменьшить деградацию нити. Ударный скачок температуры и тока превращается в плавное повышение температур и небольшое повышение силы тока на большом промежутке времени.

Устройство плавного пуска

Это более сложное устройство для плавного повышения напряжения. Если простейший блок питания состоит из конденсатора, резистора и тиристора, подключенных к сети через диодный мост, то устройство плавного включения более сложное и точнее калибрует нагрузку на лампу.

READ  Пьезоэлектрический эффект, применение в науке и технике

Принцип работы такой же, как и у обычного блока питания, но с небольшим усложнением схемы устройства. Для большей точности и плавности повышения напряжения используется двойной каскад тиристоров или схема с транзистором и тиристором. Принципиальная схема состоит из двух веток — по одной устанавливается конденсатор с резистором, на второй тиристор или транзистор служащий ключом. Аналогично с блоком питания, при заряде конденсатора происходит полный запуск лампы.

Чаще всего устройство плавного включения выполняется в небольших корпусах и предназначено для скрытого монтажа в плафонах или светильниках. Подключение происходит последовательно с источником освещения. Если лампа накаливания рассчитана на меньший ток, то устройство плавного включения устанавливается до понижающего трансформатора.

Диммирование

Принцип работы диммера следующий: регулировкой яркости пользователь устанавливает сопротивление потенциометра. Чем больше сопротивление, тем тусклее горит нить накаливания. Основной элемент диммера — это симистор, который служит выключателем. Симистор начинает пропускать ток только, если на его концах определенная разность потенциалов, если она меньше – цепь размыкается. Эту разность потенциалов создает конденсатор заряжающийся от общей цепи.

В целом получается так – конденсатор накопил заряд, выпустил его и создал разность потенциалов. Симистор включается и лампа начинает работать. Когда заряд в конденсаторе заканчивается, разность потенциалов уменьшается и симистор выключается. Этот цикл происходит каждую полуволну переменного тока.

Типы ламп и схемы подключения

Перед монтажом различных видов осветительных приборов желательно ознакомиться с принципом работы и их внутренним устройством, а также с особенностями схемы включения в питающую сеть

Также важно знать, что каждая из разновидностей способна работать длительное время лишь при строгом соблюдении правил эксплуатации

Люминесцентные лампы

Люминесцентные лампы часто устанавливают в служебных помещениях

Помимо традиционных ламп накаливания для освещения служебных и частично бытовых пространств нередко применяются их люминесцентные трубчатые аналоги. Они чаще всего устанавливаются на следующих объектах:

  • в цехах и на конвейерных линиях промышленных производств;
  • в административных зданиях и в различных боксах;
  • в гаражах, торговых залах и подобных им местах общественного пользования.

Значительно реже они используются в домашних условиях – иногда ставят на кухне для организации подсветки рабочей зоны.

Особенностью люминесцентных осветителей является невозможность прямого подключения к сети 220 Вольт, так как для пробоя газового столба требуется высокое напряжение. Для их включения используется особая электронная схема, в состав которой входят такие элементы запуска как дроссель, стартер и высоковольтный конденсатор (в некоторых случаях он не обязателен).

В последние годы неэкономичные и сильно гудящие во время работы дроссельные преобразователи заменяются так называемым «электронным балластом». Порядок его подключения обычно указывается в виде схемы, изображенной на корпусе прибора.

Галогенные источники и светодиодные лампы

При монтаже подвесных потолков традиционно устанавливают галогенные лампы

Осветители первого типа традиционно устанавливаются при монтаже подвесных и натяжных потолков. Они также идеально подходят при необходимости освещения зон с повышенной влажностью, так как выпускаются в нескольких модификациях. Одно из них рассчитано на работу от 12-ти Вольт. Для их получения в районе потолочных перекрытий устанавливается преобразователь, рассчитанный на соответствующее выходное напряжение.

Для светодиодных ламп характерно наличие встроенного драйвера, позволяющего получать нужное напряжение питания (12 или 24 Вольта). Образцы светодиодных осветителей, рассчитанные на работу от 220 Вольт, включаются подобно лампам накаливания. Но в отличие от обычных осветителей включать их в виде последовательной цепочки не рекомендуется.

Важно правильно подбирать тип ламп для определения нужного порядка их подключения. Не допускается соединять в последовательную цепочку энергосберегающие осветители, при монтаже люминесцентных и галогенных светильников руководствуются схемами их включения

При пониженном сетевом напряжении энергосберегающие лампы быстро выходят из строя, а люминесцентные осветители могут совсем не загореться.

Как работает люминесцентная лампа

Принципы работы люминесцентных источников света основываются на следующих положениях:

  1. На схему направляется напряжение. Однако вначале ток не попадает на лампочку из-за высокого напряжения среды. Ток движется по спиралям диодов, постепенно нагревая их. Ток подается на стартер, где напряжения достаточно для появления тлеющего разряда.
  2. В результате нагрева контактов пускателя током происходит замыкание биметаллической пластины. Металл берет на себя функции проводника, разряд завершается.
  3. Температура в биметаллическом проводнике падает, происходит размыкание контакта в сети. Дроссель создает импульс высокого напряжения в результате самоиндукции. Вследствие этого зажигается люминесцентная лампочка.
  4. Через осветительный прибор идет ток, который уменьшается вдвое, так как напряжение на дросселе сокращается. Его не хватает для еще одного запуска стартера, контакты которого находятся в разомкнутом состоянии при включенной лампочке.

Чтобы составить схему включения двух лампочек, установленных в одном осветительном приборе, необходим общий дроссель. Лампы подключаются последовательно, однако на каждом источнике света имеется параллельный стартер.

Устройство электронного балласта

Как видно из принципиальной схемы, пускатель в виде электронного баласта является своеобразным преобразователем напряжения. Миниатюрный инвертор преобразует постоянный ток в переменный высокой частоты. Этот ток подается на электроды-нагреватели. Интенсивность нагревания этих электродов повышается. Включение преобразователя сделано так, что на первых этапах частота тока имеет высокую частоту. Сама люминесцентная лампа включена в контур, у которого резонансная частота меньше, чем начальная частота преобразователя. B дальнейшем частота уменьшается, a напряжение, a напряжение на колебательном контуре и на лампе растет,  в результате чего контур начинает приближаться к резонированию. Одновременно увеличивается степень нагрева электродов. Это приводит к созданию условий возникновения разряда в газовой смеси и люминофорное покрытие колбы начинает светиться.

READ  Тест. строение атома. элементарные частицы. изотопы

Электронный балласт составляется таким образом, чтобы регулирующее устройство могло подстраиваться под те характеристики, которые имеет люминесцентная лампа. Это дает возможность сохранять изначальные световые характеристики осветительного прибора в течение продолжительного времени. По мере износа люминесцентные лампы требуют все большего напряжения для достижения момента начального разряда. Электронный балласт самостоятельно подстраивается под произошедшие изменения и качество освещения остается прежним.

По сравнению с дроссельным, электронный балласт имет несколько достоинств:

  • он обеспечивает большую экономичность при эксплуатации;
  • дает возможность создать условия для бережного нагревания электродов;
  • обеспечивает плавное включение лампы;
  • использование электронного баланса дает возможность преодолеть такой недостаток люминесцентного освещения, как мерцание;
  • дает возможность применять люминесцентные лампы в условиях холода;
  • увеличивает временные эксплуатационные характеристики;
  • имеет намного меньший вес и размеры.

К недостаткам электронного балласта можно отнести высокие требования, предъявляемые к качеству комплектующих,a также точности выполнения монтажа, усложненность схемы подключения.

Варианты подключения

Независимо от схемы подключения, для устройств всех видов, есть общее правило. Их подключение осуществляется в разрыв фазового провода цепей, питающих лампы.

Существует несколько вариантов подключения светорегуляторов:

  1. Упрощенная схема последовательного подключения диммера к одной или нескольким лампам. При такой схеме он может работать как выключатель и одновременно регулировать яркость искусственного света.
  2. Схема, включающая последовательно в одну цепь выключатель и диммер. Это позволяет установить выключатель при входе в помещение, а светорегулятор непосредственно возле кровати. Если это спальня, то не потребуется вставать, чтобы установить такое освещение, которое наиболее комфортно. При выходе из помещения можно воспользоваться выключателем для полного отключения света.
  3. Схема, имеющая в цепи несколько светорегуляторов, расположенных в разных местах помещения и управляющих одним источником света, например, люстрой. Для такой схемы в распределительную коробку должен подводиться провод от каждого установленного регулятора света;

Есть еще вариант подключения светорегулятора к 2 проходным выключателям, но он используется редко.

Различают вот такие виды ламп освещения:

— лампы накаливания (она же лампа Ильича);

— люминесцентные лампы;

— галогенные лампы освещения;

— светодиодные лампы (светодиодные светильники);

А теперь рассмотрим с вами каждый вид ламп отдельно.

Лампа накаливания.

Подробно в устройство этой лампы мы углубляться не будем. Об этом я напишу в другой статье, так что подписывайтесь на обновление, чтобы не пропустить. Могу сказать, что этот вид ламп пока ещё самый распространённый и широко используется как для освещения частных домов, так и для освещения промышленных предприятий. Диапазон мощности этих ламп колеблется от 15 Вт до 500 Вт. Так же эти лампы выпускаются в различных исполнениях. Самые популярные это: вакуумные (самая проста в изготовлении), аргоновые и криптоновые лампы.

Основные преимущества этих ламп:

они не дорогие в изготовлении;

мгновенно загорается и для того, чтобы лампа светилась не нужно никаких дополнительных пусковых элементов;

может работать на любом виде тока, и не очень чувствительна к перепаду напряжения;

лампы можно выпускать на различный диапазон напряжения;

лампа абсолютно бесшумная и не требует утилизации.

Недостатки:

очень низкая светоотдача;

имеет не большой срок службы;

лампа очень хрупкая, её можно легко разбить;

очень маленький КПД (у обычной лампы всего 4%);

при работе очень сильно нагревается, и по этому нужен плафон с не горючих материалов.

Люминесцентные лампы.

Представляет собой колбу — покрытую из нутрии люминофором и наполненную газом. Такие лампы дают на много больше света, чем лампа накаливания при такой же потребляемой мощности. Широко используются для освещения общественных мест и промышленных предприятий. Бывают высокого и низкого давления. Самые распространённые – это газоразрядные ртутные лампы.

Преимущества:

значительно лучше светоотдача чем у ламп накаливания;

множество световых оттенков;

более длительный срок службы.

Недостатки:

химически опасна, так как содержит ртуть;

требует утилизации;

при использовании пускорегулирующей аппаратуры может появиться шум, из-за гудения дросселя;

мерцание лампы.

Галогенные лампы.

В принципе это та же самая лампа накаливания, только во внутрь колбы добавлены пары галогенов брома и йода. И за счёт этого увеличивается срок службы этих ламп. Единственной особенность есть то, что при установке нельзя касаться колбы пальцами. Так как при работе лампы очень нагреваются и оставленная грязь на поверхности, может привести к разрушению колбы или уменьшению светоотдачи. Широко используются в автомобилестроении.

Светодиодные лампы и светодиодные светильники.

Такого рода лампы и светильники были придуманы совсем недавно, и источником света в них является светодиод. Такого рода лампы могут применяться для освещения любых мест и любых сооружений. Но в нашем государстве их редко где можно встретить из-за их стоимости.

Преимущества:

по сравнению с лампами накаливания они значительно меньше потребляют электрической энергии;

довольно-таки длительный срок службы, от 300000 до 50000 часов и более;

не высокая температура нагрева корпуса;

хорошая яркость;

хорошая механическая прочность и не большие габариты;

не требует утилизации, и не содержит вредных для окружающей среды веществ.

Недостатки:

по сравнению с остальными лампами имеет высокую цену;

при выходе со строя нужна замена на аналогичный элемент.

Вот мы с вами и рассмотрели, какие бывают виды ламп освещения. В дальнейшем планирую раскрыть тему ламп ещё лучше. Так что подписывайтесь на обновление, чтобы не пропустить новых статей. Если статья была вам полезна, то поделитесь нею со своими друзьями в социальной сети. Буду заканчивать, до новых встреч.

С уважением Александр!

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: