Регулирование напряжения с помощью БСК
Величина напряжения в различных точках энергосистемы изменяется в зависимости от нагрузки и схемы сети. Этот параметр согласно ГОСТ 13109—87 должен находиться в пределах от 5 до 20% (таблица 1).
Номинальное напряжение (линейное) UНОМ, кВ | 6 | 10 | 20 | 35 | 110 | 220 | 330 | 500 | 750 | 1 150 |
---|---|---|---|---|---|---|---|---|---|---|
Наибольшее рабочее напряжение (линейное), кВ | 7,2 | 12 | 24 | 40,5 | 126 | 242 | 363 | 525 | 787 | 1 200 |
Превышение наибольшего рабочего напряжения над номинальным напряжением, % | 20 | 20 | 20 | 15 | 15 | 10 | 10 | 5 | 5 | 5 |
Кроме того, ограничение по наибольшему рабочему напряжению электрооборудования диктуется надежностью работы изоляции электрооборудования, т. к. постоянно повышенное напряжение вызывает ускоренное старение изоляции и выход ее из строя. У большинства потребителей электроэнергии допускаются длительные отклонения напряжения от номинального не более чем на ±5%. Превышение номинального напряжения приводит к сокращению срока службы оборудования, уменьшение снижает производительность и экономичность электроприемников, пропускную способность линий электропередачи, может нарушить устойчивость работы синхронных и асинхронных электродвигателей.
Как видно из таблицы 1, с повышением номинального напряжения допустимые повышения напряжения уменьшаются с 20 до 5%. Это связано с ростом стоимости изоляции в установках более высоких напряжений, минимизацией затрат на изоляцию и выполнением оборудования практически на номинальное напряжение.
Допустимые снижения напряжения в энергосистеме также лимитированы и составляют от 10 до 15%. Как мы видим, в электросетях возможны колебания напряжения от -15 до +20%. Поэтому при изменении параметров схемы, величины нагрузки, и режима работы электрической сети необходимо регулировать уровень напряжения посредством технических мероприятий.
Как известно, напряжение у потребителя определяется формулой:
U = UЦП − (PНRЭ + QНXЭ) / UН,
где: UЦП — напряжение центра питания;
РН и QН — активная и реактивная мощность нагрузки потребителя;
RЭ и XЭ — эквивалентное активное и индуктивное сопротивление между центром питания и потребителем.
Из приведенной формулы видно, что можно влиять на напряжение у потребителя, изменяя реактивную мощность QН, например, регулируя ее с помощью батареи статических конденсаторов.
Батареи статических конденсаторов (БСК)
Батареи статических конденсаторов на напряжения 6, 10, 35, 110 × 220 кВ мощностью от 5 до 200 МВАр производятся на базе косинусных однофазных конденсаторов, путем параллельно-последовательного соединения их в звезду или треугольник в зависимости от режима работы нейтрали.
Внедрение батарей статических конденсаторов позволяет увеличить напряжение на шинах подстанций на 3—4%, снизить потери в сетях 6—110 кВ, скорректировать перетоки энергии и урегулировать напряжение в энергосистеме.
Кроме того, при превалировании тяговой нагрузки, вследствие ее неравномерности и обусловленной тем самым неравномерной загрузки линий, возникает необходимость регулировать показатели качества передаваемой электроэнергии применением компенсирующих устройств (БСК или реакторов, в зависимости от режима).
Схема подключения конденсаторной установки
Конденсаторная установка подключается в параллель к главному шинопроводу силового трансформатора. При этом используется трансформатор тока, который измеряет значение тока на шинах от силового трансформатора. Трансформатор тока располагается на шинопроводе между фидером силового трансформатора и точкой подключения конденсаторной установки. Выводы трансформатора тока подключаются к клеммной колодке внутри установки, имеющей обозначение «ТТ» Ввод конденсаторной установки в работу производится с помощью комплектного вводного разъединителя, путем поворота ручки в положение «ВКЛЮЧЕНО».
Монтаж конденсаторных установок
Место и условия размещения конденсаторной установки (КУ) определяется по таким показателям:
- конструкция конденсаторной установки должна полностью соответствовать условиям окружающей среды;
- конденсаторные установки с общей массой масла более 600 кг в каждой должны быть расположены в отдельном помещении, отвечающем требованиям огнестойкости и т. д.;
- конденсаторные установки, размещенные в общем помещении, должны иметь сетчатые ограждения или защитные кожухи, к тому же важным будит наличие специальных емкостей о ограждений супротив растекания жидкостей;
- расстояние между единичными конденсаторами должно быть не менее 50 мм и должно выбираться по условиям охлаждения конденсаторов и обеспечения изоляционных расстояний;
- конструкции, на которых устанавливаются конденсаторы, должны выполняться из несгораемых материалов;
- при разделении конденсаторной батареи на части рекомендуется располагать их таким образом, чтобы была обеспечена безопасность работ на каждой из частей при включенных остальных;
- для работы с установками конденсаторного типа рекомендуется обращаться не посредственно к квалифицированным специалистам.
Литература
- Приказ Министерства промышленности и энергетики РФ от 22 февраля 2007 г. № 49 «О порядке расчёта значений соотношения потребления активной и реактивной мощности для отдельных энергопринимающих устройств (групп энергопринимающих устройств) потребителей электрической энергии, применяемых для определения обязательств сторон в договорах об оказании услуг по передаче электрической энергии (договорах энергоснабжения)».
Обновление от 12 февраля 2018 г. (спасибо пользователю «Игорь» за комментарий)
Приказ № 49 от 22 февраля 2007 г. утратил силу с 07.08.2015 на основании приказа Минэнерго России от 23.06.2015 № 380:
Применительно к статье, в приказе № 380 убрали ограничение
а также изменилась таблица
(в старой редакции «Предельные значения коэффициента реактивной мощности»).
Принцип действия
Активная энергия применяется по назначению и превращается в тепловую, механическую, а реактивная отсылается на создание электромагнитных полей и не дает никакой пользы. При этом создаёт дополнительную нагрузку на кабельные линии и проекты электроснабжения приходится разрабатывать с учетом появления реактивной мощности. А реактивная мощность оплачивается по счетчику согласно тарифу наряду с активной, а это довольно большая часть потребления электроэнергии.
Конденсаторные установки снижают потерю в кабельных линиях, что приводит соответственно к уменьшению общего энергопотребления и снижению токовой нагрузки на линию.
Для регулировки нагрузки используются различные устройства, в том числе конденсаторы, контакторы, контроллеры и защитная аппаратура. С их помощью каждая конденсаторная установка может легко компенсировать реактивную мощность. Они довольно просты в монтаже и эксплуатации, работают практически бесшумно, способствуют сокращению потерь в кабельных линиях.
Принцип действия конденсаторных установок основан на эффекте динамической или коммутируемой компенсации реактивной мощности. С этой целью применяется специальная система конденсаторов, располагающихся в определенной последовательности. Непосредственная коммутация осуществляется с помощью контакторов или тиристоров. Первый вариант используется в большинстве конденсаторных установок с электромеханическими реле. Они обладают универсальной конструкцией, просты в использовании, стоят сравнительно недорого.
Второй вариант с использованием тиристорных систем считается более дорогим, однако он хорошо зарекомендовал себя в сетях с резко изменяющимися нагрузками. Подключение любого устройства может производиться на любых участках электрической сети, независимо от принципа действия.
Защита конденсаторных установок
Чтобы обеспечить безопасность установки, применяются механизмы:
- датчик температуры, инициирующий подогрев при ее понижении и охлаждение при излишнем нагреве батареи конденсаторов;
- защита от инцидентов короткого замыкания, сильных скачков тока и напряжения;
- блокиратор попыток прикосновения к токоведущим деталям;
- контактный переключатель, отключающий агрегат при отпирании двери с работающим оборудованием.
Монтаж установки с конденсаторной батареей позволит разгрузить электродвигатели, генераторы и другое оборудование, несущее реактивную нагрузку. При подготовке к приобретению нужно рассчитать, куда целесообразнее всего будет подключить агрегат.
Эксплуатация и обслуживание конденсаторных установок
До включения конденсаторной установки в работу необходимо провести следующие механические испытания:
- проверку контакторов, конденсаторов, электронного регулятора, силовых предохранителей и предохранителей вторичных цепей на отсутствие механических повреждений и наличия посторонних предметов;
- проверку соединений силовых проводов и контакторов, протянуть по необходимости;
- проверку болтовых соединений на шинах, выводов предохранителей;
- проверку механического крепления и заземления конденсаторов;
- проверку фазировки подсоединения силового кабеля к вводным шинам;
- проверку качества болтовых соединений подводящего силового кабеля;
- проверку подключения к контуру заземления.
До включения конденсаторной установки в работу необходимо провести следующие электрические испытания:
- программирование параметров регулятора реактивной мощности;
- проверку работоспособности УКМ;
- включение всех ступеней УКМ в ручном режиме для всех видов регуляторов;
- проверку отсутствия мест локального перегрева контактов. Отключение УКМ в ручном режиме;
- проверку соответствия включения ступеней регулятора и конденсаторов;
- трехкратное включение всех ступеней УКМ в ручном режиме для всех типов регуляторов;
- проверку отсутствия дребезга контактов в контакторах. 8.4 Все измерения, испытания и опробования в соответствии с действующими директивными документами, настоящей инструкции, проведенные монтажным персоналом, должны быть
оформлены соответствующими актами и протоколами.
При температуре в помещении, превышающей +40°С в течение 4-х часов, следует отключить установки от сети.
Во время эксплуатации УКМ, необходимо регулярно производить технические осмотры. Осмотры подразделяются:
- ежедневные;
- ежемесячные;
- внеочередные.
Ежедневный осмотр. Необходимо контролировать:
- температуры окружающего воздуха, в месте расположения установки;
- аварийных сигналов на регуляторе.
Ежемесячный осмотр. Необходимо проверять:
- исправность ограждений, целостность замков дверей, отсутствие посторонних предметов;
- отсутствие пыли, грязи;
- срабатывание защиты в конденсаторных элементах (поднятие крышки конденсаторного элемента на 10-12 мм);
- значение напряжения на шинах установки (смотри описание на регулятор);
- значение тока установки и равномерность нагрузки отдельных фаз;
- исправность всех контактов внешним осмотром электрической схемы включения установки (токопроводящих шин, заземления, контакторов, разъединителей, и т. п.);
- подтяжка крепежа контактных соединений;
- наличие и исправность блокировок;
- исправность цепи разрядного резистора;
- проверка целостности плавких вставок предохранителей, проверяется ом-метром;
- наличие и качество средств защиты (специальной штанги и др.), средств тушения пожара.
Внеочередной осмотр. Производится в случаях:
- появления разрядов (непрерывного треска) в конденсаторах;
- повышения напряжения на вводе в установку;
- повышение температуры окружающего воздуха до значений близких к предельно допустимым.
Неисправные элементы схемы необходимо заменять элементами того же типономинала. Допускается использовать элементы, способные по техническим характеристикам заменить неисправные в допустимых режимах работы.
Обо всех технических осмотрах и неисправностях, обнаруженных во время технических осмотров установок, должны быть произведены соответствующие записи в журнал эксплуатации.
Установки синхронной компенсации реактивной мощности
Установки синхронной компенсации реактивной мощности используются в энергосетях развитых стран мира уже более 50 лет, однако из-за больших потерь в сравнении с статическими устройствами компенсации реактивной мощности и стоимости (в том числе систем защиты от токов короткого замыкания) установки синхронной компенсации реактивной мощности постепенно заменяются более прогрессивными устройствами. Кроме того, установки синхронной компенсации реактивной мощности, а по факту — синхронные двигатели специальной конструкции, работающие на холостом ходу и в режиме перевозбуждения обмотки генерирующие реактивную мощность — являются средствами пассивной компенсации и не могут быть адаптированы в системах FACTS.
Переключаемые тиристорные установки компенсации реактивной мощности типа TSC. Это статические конденсаторные установки с различным числом ступеней, управляемые тиристорными переключателями, обеспечивающими быстрое подключение/отключение ступеней в момент равенства напряжений на конденсаторных блоках и в сети. Впервые статические установки компенсации реактивной мощности типа TSC были использованы ASEA в 1971 году, имели среднюю задержку переключения от половины до цикла колебаний по току/напряжению, по факту не генерировали гармоник и отличались простотой конструктивных решений.
Рис. Переключаемая тиристорами конденсаторная установка компенсации реактивной мощности. Вместе с тем, устройства типа TSC остались ступенчатыми, а значит дискретными по потокам генерируемой мощности, а каждая батарея конденсаторов оборудовалась своим тиристорным переключателем, что делало установку материалоемкой и финансово затратной.
Отчасти недостатки финансовой доступности установок типа TSC были устранены применением тиристорно-диодных схем, к тому же выгодно отличающихся почти полным отсутствием импульсных токов при переключении, однако имеющих запаздывание включения/отключения ступени не менее одного цикла в сравнении половиной цикла у установок TSC.
Рис. Бинарные тиристорно-диодные переключатели статических установок компенсации реактивной мощности.
Рис. Диаграммы токов бинарной тиристорно-диодной установки компенсации реактивной мощности, где: а — d — токи по В1 — В4; е — результирующая кривая тока установки. Управляемые тиристорами реакторы.
Управляемые тиристорами реакторы (тип TCR), как правило, имеют батареи статических конденсаторов, фильтры гармоник низшего порядка и управляемую тиристорами индуктивность (собственно реактор), интегрируемую в каждую фазу питающей сети. Управляемая тиристорами индуктивность используется для демпфирования избытка реактивной мощности, генерируемой конденсаторами, что исключает риски перенапряжения. В то же время тиристорное управление, как конденсаторными блоками, так и индуктивностью позволяет формировать достаточно плавную компенсацию реактивной мощности, хотя для получения реально плавной на практике компенсации используют:
дорогие управляемые тиристорные генераторы, построенные по трех-, шести и более импульсной топологии.
Рис. Трех импульсные (слева) управляемые тиристорами реакторы с пассивными фильтрами низкоуровневых гармоник и двенадцати импульсные (справа) управляемые тиристорами реакторы типа TCR с трансформатором для смещения фаз, позволяющего устранить гармоники 5 и 7 порядка без использования пассивных фильтров.
комбинированные установки компенсации реактивной мощности TSC-TCR с управлением тиристорным переключением ступеней батарей статических конденсаторов и реакторов.
Рис. Типовая топология комбинированной установки компенсации реактивной мощности TSC-TCR.
тиристорно-управляемые установки последовательной (продольной) компенсации TCSC (ThyristorControlledSeriesCompensator).
Рис. Типовая топология тиристорно-управляемой установки последовательной (продольной) компенсации TCSC.