Конденсаторные установки 6,3 — 10,5 кв

Регулирование напряжения с помощью БСК

Величина напряжения в различных точках энергосистемы изменяется в зависимости от нагрузки и схемы сети. Этот параметр согласно ГОСТ 13109—87 должен находиться в пределах от 5 до 20% (таблица 1).

Напряжение в энергосистеме
Номинальное напряжение (линейное) UНОМ, кВ 6 10 20 35 110 220 330 500 750 1 150
Наибольшее рабочее напряжение (линейное), кВ 7,2 12 24 40,5 126 242 363 525 787 1 200
Превышение наибольшего рабочего напряжения над номинальным напряжением, % 20 20 20 15 15 10 10 5 5 5

Кроме того, ограничение по наибольшему рабочему напряжению электрооборудования диктуется надежностью работы изоляции электрооборудования, т. к. постоянно повышенное напряжение вызывает ускоренное старение изоляции и выход ее из строя. У большинства потребителей электроэнергии допускаются длительные отклонения напряжения от номинального не более чем на ±5%. Превышение номинального напряжения приводит к сокращению срока службы оборудования, уменьшение снижает производительность и экономичность электроприемников, пропускную способность линий электропередачи, может нарушить устойчивость работы синхронных и асинхронных электродвигателей.

Как видно из таблицы 1, с повышением номинального напряжения допустимые повышения напряжения уменьшаются с 20 до 5%. Это связано с ростом стоимости изоляции в установках более высоких напряжений, минимизацией затрат на изоляцию и выполнением оборудования практически на номинальное напряжение.

Допустимые снижения напряжения в энергосистеме также лимитированы и составляют от 10 до 15%. Как мы видим, в электросетях возможны колебания напряжения от -15 до +20%. Поэтому при изменении параметров схемы, величины нагрузки, и режима работы электрической сети необходимо регулировать уровень напряжения посредством технических мероприятий.

Как известно, напряжение у потребителя определяется формулой:

U = UЦП − (PНRЭ + QНXЭ) / UН,

где: UЦП — напряжение центра питания;

РН и QН — активная и реактивная мощность нагрузки потребителя;

RЭ и XЭ — эквивалентное активное и индуктивное сопротивление между центром питания и потребителем.

Из приведенной формулы видно, что можно влиять на напряжение у потребителя, изменяя реактивную мощность QН, например, регулируя ее с помощью батареи статических конденсаторов.

Батареи статических конденсаторов (БСК)

Батареи статических конденсаторов на напряжения 6, 10, 35, 110 × 220 кВ мощностью от 5 до 200 МВАр производятся на базе косинусных однофазных конденсаторов, путем параллельно-последовательного соединения их в звезду или треугольник в зависимости от режима работы нейтрали.

Внедрение батарей статических конденсаторов позволяет увеличить напряжение на шинах подстанций на 3—4%, снизить потери в сетях 6—110 кВ, скорректировать перетоки энергии и урегулировать напряжение в энергосистеме.

Кроме того, при превалировании тяговой нагрузки, вследствие ее неравномерности и обусловленной тем самым неравномерной загрузки линий, возникает необходимость регулировать показатели качества передаваемой электроэнергии применением компенсирующих устройств (БСК или реакторов, в зависимости от режима).

Схема подключения конденсаторной установки

Конденсаторная установка подключается в параллель к главному шинопроводу силового трансформатора. При этом используется трансформатор тока, который измеряет значение тока на шинах от силового трансформатора. Трансформатор тока располагается на шинопроводе между фидером силового трансформатора и точкой подключения конденсаторной установки. Выводы трансформатора тока подключаются к клеммной колодке внутри установки, имеющей обозначение «ТТ» Ввод конденсаторной установки в работу производится с помощью комплектного вводного разъединителя, путем поворота ручки в положение «ВКЛЮЧЕНО».

Монтаж конденсаторных установок

Место и условия размещения конденсаторной установки (КУ) определяется по таким показателям:

  • конструкция конденсаторной установки должна полностью соответствовать условиям окружающей среды;
  • конденсаторные установки с общей массой масла более 600 кг в каждой должны быть расположены в отдельном помещении, отвечающем требованиям огнестойкости и т. д.;
  • конденсаторные установки, размещенные в общем помещении, должны иметь сетчатые ограждения или защитные кожухи, к тому же важным будит наличие специальных емкостей о ограждений супротив растекания жидкостей;
  • расстояние между единичными конденсаторами должно быть не менее 50 мм и должно выбираться по условиям охлаждения конденсаторов и обеспечения изоляционных расстояний;
  • конструкции, на которых устанавливаются конденсаторы, должны выполняться из несгораемых материалов;
  • при разделении конденсаторной батареи на части рекомендуется располагать их таким образом, чтобы была обеспечена безопасность работ на каждой из частей при включенных остальных;
  • для работы с установками конденсаторного типа рекомендуется обращаться не посредственно к квалифицированным специалистам.
READ  Измерительный мост

Литература

  1. Приказ Министерства промышленности и энергетики РФ от 22 февраля 2007 г. № 49 «О порядке расчёта значений соотношения потребления активной и реактивной мощности для отдельных энергопринимающих устройств (групп энергопринимающих устройств) потребителей электрической энергии, применяемых для определения обязательств сторон в договорах об оказании услуг по передаче электрической энергии (договорах энергоснабжения)».

Обновление от 12 февраля 2018 г. (спасибо пользователю «Игорь» за комментарий)

Приказ № 49 от 22 февраля 2007 г. утратил силу с 07.08.2015 на основании приказа Минэнерго России от 23.06.2015 № 380:

Применительно к статье, в приказе № 380 убрали ограничение

а также изменилась таблица

(в старой редакции «Предельные значения коэффициента реактивной мощности»).

Принцип действия

Активная энергия применяется по назначению и превращается в тепловую, механическую, а реактивная отсылается на создание электромагнитных полей и не дает никакой пользы. При этом создаёт дополнительную нагрузку на кабельные линии и проекты электроснабжения приходится разрабатывать с учетом появления реактивной мощности. А реактивная мощность оплачивается по счетчику согласно тарифу наряду с активной, а это довольно большая часть потребления электроэнергии.

Конденсаторные установки снижают потерю в кабельных линиях, что приводит соответственно к уменьшению общего энергопотребления и снижению токовой нагрузки на линию.

Для регулировки нагрузки используются различные устройства, в том числе конденсаторы, контакторы, контроллеры и защитная аппаратура. С их помощью каждая конденсаторная установка может легко компенсировать реактивную мощность. Они довольно просты в монтаже и эксплуатации, работают практически бесшумно, способствуют сокращению потерь в кабельных линиях.

Принцип действия конденсаторных установок основан на эффекте динамической или коммутируемой компенсации реактивной мощности. С этой целью применяется специальная система конденсаторов, располагающихся в определенной последовательности. Непосредственная коммутация осуществляется с помощью контакторов или тиристоров. Первый вариант используется в большинстве конденсаторных установок с электромеханическими реле. Они обладают универсальной конструкцией, просты в использовании, стоят сравнительно недорого.

Второй вариант с использованием тиристорных систем считается более дорогим, однако он хорошо зарекомендовал себя в сетях с резко изменяющимися нагрузками. Подключение любого устройства может производиться на любых участках электрической сети, независимо от принципа действия.

Защита конденсаторных установок

Чтобы обеспечить безопасность установки, применяются механизмы:

  • датчик температуры, инициирующий подогрев при ее понижении и охлаждение при излишнем нагреве батареи конденсаторов;
  • защита от инцидентов короткого замыкания, сильных скачков тока и напряжения;
  • блокиратор попыток прикосновения к токоведущим деталям;
  • контактный переключатель, отключающий агрегат при отпирании двери с работающим оборудованием.
READ  Глава 1. основные принципы построения систем автоматического управления

Монтаж установки с конденсаторной батареей позволит разгрузить электродвигатели, генераторы и другое оборудование, несущее реактивную нагрузку. При подготовке к приобретению нужно рассчитать, куда целесообразнее всего будет подключить агрегат.

Эксплуатация и обслуживание конденсаторных установок

До включения конденсаторной установки в работу необходимо провести следующие механические испытания:

  • проверку контакторов, конденсаторов, электронного регулятора, силовых предохранителей и предохранителей вторичных цепей на отсутствие механических повреждений и наличия посторонних предметов;
  • проверку соединений силовых проводов и контакторов, протянуть по необходимости;
  • проверку болтовых соединений на шинах, выводов предохранителей;
  • проверку механического крепления и заземления конденсаторов;
  • проверку фазировки подсоединения силового кабеля к вводным шинам;
  • проверку качества болтовых соединений подводящего силового кабеля;
  • проверку подключения к контуру заземления.

До включения конденсаторной установки в работу необходимо провести следующие электрические испытания:

  • программирование параметров регулятора реактивной мощности;
  • проверку работоспособности УКМ;
  • включение всех ступеней УКМ в ручном режиме для всех видов регуляторов;
  • проверку отсутствия мест локального перегрева контактов. Отключение УКМ в ручном режиме;
  • проверку соответствия включения ступеней регулятора и конденсаторов;
  • трехкратное включение всех ступеней УКМ в ручном режиме для всех типов регуляторов;
  • проверку отсутствия дребезга контактов в контакторах. 8.4 Все измерения, испытания и опробования в соответствии с действующими директивными документами, настоящей инструкции, проведенные монтажным персоналом, должны быть
    оформлены соответствующими актами и протоколами.

При температуре в помещении, превышающей +40°С в течение 4-х часов, следует отключить установки от сети.
Во время эксплуатации УКМ, необходимо регулярно производить технические осмотры. Осмотры подразделяются:

  • ежедневные;
  • ежемесячные;
  • внеочередные.

Ежедневный осмотр. Необходимо контролировать:

  • температуры окружающего воздуха, в месте расположения установки;
  • аварийных сигналов на регуляторе.

Ежемесячный осмотр. Необходимо проверять:

  • исправность ограждений, целостность замков дверей, отсутствие посторонних предметов;
  • отсутствие пыли, грязи;
  • срабатывание защиты в конденсаторных элементах (поднятие крышки конденсаторного элемента на 10-12 мм);
  • значение напряжения на шинах установки (смотри описание на регулятор);
  • значение тока установки и равномерность нагрузки отдельных фаз;
  • исправность всех контактов внешним осмотром электрической схемы включения установки (токопроводящих шин, заземления, контакторов, разъединителей, и т. п.);
  • подтяжка крепежа контактных соединений;
  • наличие и исправность блокировок;
  • исправность цепи разрядного резистора;
  • проверка целостности плавких вставок предохранителей, проверяется ом-метром;
  • наличие и качество средств защиты (специальной штанги и др.), средств тушения пожара.

Внеочередной осмотр. Производится в случаях:

  • появления разрядов (непрерывного треска) в конденсаторах;
  • повышения напряжения на вводе в установку;
  • повышение температуры окружающего воздуха до значений близких к предельно допустимым.

Неисправные элементы схемы необходимо заменять элементами того же типономинала. Допускается использовать элементы, способные по техническим характеристикам заменить неисправные в допустимых режимах работы.
Обо всех технических осмотрах и неисправностях, обнаруженных во время технических осмотров установок, должны быть произведены соответствующие записи в журнал эксплуатации.

Установки синхронной компенсации реактивной мощности

Установки синхронной компенсации реактивной мощности используются в энергосетях развитых стран мира уже более 50 лет, однако из-за больших потерь в сравнении с статическими устройствами компенсации реактивной мощности и стоимости (в том числе систем защиты от токов короткого замыкания) установки синхронной компенсации реактивной мощности постепенно заменяются более прогрессивными устройствами. Кроме того, установки синхронной компенсации реактивной мощности, а по факту — синхронные двигатели специальной конструкции, работающие на холостом ходу и в режиме перевозбуждения обмотки генерирующие реактивную мощность — являются средствами пассивной компенсации и не могут быть адаптированы в системах FACTS.

READ  Где в москве принимают опасные бытовые отходы

Переключаемые тиристорные установки компенсации реактивной мощности типа TSC. Это статические конденсаторные установки с различным числом ступеней, управляемые тиристорными переключателями, обеспечивающими быстрое подключение/отключение ступеней в момент равенства напряжений на конденсаторных блоках и в сети. Впервые статические установки компенсации реактивной мощности типа TSC были использованы ASEA в 1971 году, имели среднюю задержку переключения от половины до цикла колебаний по току/напряжению, по факту не генерировали гармоник и отличались простотой конструктивных решений.

Рис. Переключаемая тиристорами конденсаторная установка компенсации реактивной мощности. Вместе с тем, устройства типа TSC остались ступенчатыми, а значит дискретными по потокам генерируемой мощности, а каждая батарея конденсаторов оборудовалась своим тиристорным переключателем, что делало установку материалоемкой и финансово затратной.

Отчасти недостатки финансовой доступности установок типа TSC были устранены применением тиристорно-диодных схем, к тому же выгодно отличающихся почти полным отсутствием импульсных токов при переключении, однако имеющих запаздывание включения/отключения ступени не менее одного цикла в сравнении половиной цикла у установок TSC.

Рис. Бинарные тиристорно-диодные переключатели статических установок компенсации реактивной мощности.

Рис. Диаграммы токов бинарной тиристорно-диодной установки компенсации реактивной мощности, где: а — d — токи по В1 — В4; е — результирующая кривая тока установки. Управляемые тиристорами реакторы.

Управляемые тиристорами реакторы (тип TCR), как правило, имеют батареи статических конденсаторов, фильтры гармоник низшего порядка и управляемую тиристорами индуктивность (собственно реактор), интегрируемую в каждую фазу питающей сети. Управляемая тиристорами индуктивность используется для демпфирования избытка реактивной мощности, генерируемой конденсаторами, что исключает риски перенапряжения. В то же время тиристорное управление, как конденсаторными блоками, так и индуктивностью позволяет формировать достаточно плавную компенсацию реактивной мощности, хотя для получения реально плавной на практике компенсации используют:

дорогие управляемые тиристорные генераторы, построенные по трех-, шести и более импульсной топологии.

Рис. Трех импульсные (слева) управляемые тиристорами реакторы с пассивными фильтрами низкоуровневых гармоник и двенадцати импульсные (справа) управляемые тиристорами реакторы типа TCR с трансформатором для смещения фаз, позволяющего устранить гармоники 5 и 7 порядка без использования пассивных фильтров.

комбинированные установки компенсации реактивной мощности TSC-TCR с управлением тиристорным переключением ступеней батарей статических конденсаторов и реакторов.

Рис. Типовая топология комбинированной установки компенсации реактивной мощности TSC-TCR.

тиристорно-управляемые установки последовательной (продольной) компенсации TCSC (ThyristorControlledSeriesCompensator).

Рис. Типовая топология тиристорно-управляемой установки последовательной (продольной) компенсации TCSC.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: