Сто 59012820.27.100.003-2012 регулирование частоты и перетоков активной мощности в еэс россии. нормы и требования (с изменением)

4.1. Баланс мощности и частота

Любое нарушение соответствия между выработкой электроэнергии и её потреблением немедленно отражается на качестве электроэнергии. Критерием такого соответствия является наличие баланса мощности между генераторами энергосистемы и её потребителями при номинальной частоте электрического тока:

                                                                                                                 (35)

где:      —           суммарная мощность генераторов электростанций (суммарная нагрузка

генераторов, генерация) при номинальной частое;

             —          суммарная мощность потребителей электроэнергии, включающая в себя

 кроме собственно мощностей потребителей также и потери в сетях,

расход на собственные нужды энергосистемы и т.п. (суммарная нагрузка

потребителей, энергопотребление) при номинальной частоте.

Равенство суммарной мощности генераторов и потребителей является необходимым условием существования установившегося режима в энергосистеме. Если система работает с любой, в том числе и неноминальной частотой f, и частота эта неизменна, значит, в системе условие баланса выполняется при этой частоте:

                                                                                                             (36)

где:      и  — то же, что  и  в (35), но при частоте f, отличной от номинальной.

Как будет показано ниже, и нагрузка генераторов, и нагрузка потребителей изменяются при изменении частоты. Характер этой зависимости таков, что при небольших нарушениях баланса (35), вызванных изменением нагрузки генераторов или потребителей, соответствие между выработкой и потреблением электроэнергии (36) восстанавливается автоматически при новой частоте. Это свойство саморегулирования энергосистемы обеспечивает устойчивость её работы. При сильных нарушениях баланса возможно нарушение саморегулирования, что может привести к возникновению аварийной ситуации в энергосистеме.

Частота в энергосистеме является показателем состояния баланса мощности; задача поддержания баланса сводится к поддержанию номинальной частоты.

Регулирование режима энергосистемы по частоте сводится к постоянному поддержанию баланса мощности путем ручного или автоматического (а чаще и того, и другого одновременно) изменения нагрузки генераторов электростанций таким образом, чтобы частота все время оставалась близкой к номинальной. Стандартом на качество электроэнергии предусмотрено поддержание частоты в энергосистеме в пределах 50±0,1 Гц.

Причиной отклонения частоты от номинального значения является нарушение общего баланса мощности энергосистемы . Величину этого нарушения назовем первичным небалансом мощности DР:

                                                                                                              (37)

Нормально DР = 0, и формула (37) превращается в (35). Небаланс положителен при избытке мощности генераторов () и отрицателен при дефиците мощности генераторов ().

При возникновении небаланса (DР ¹ 0) частота изменяется таким образом, чтобы при новом её значении восстановилось равенство между суммарными нагрузками генераторов и потребителей. Новые значения мощности генераторов и потребителей можно выразить следующим образом:

                                                                                                   (38)

                                                                                                  (39)

Из (36) с учетом (37)–(39) следует взаимосвязь между небалансом мощности при номинальной частоте DР и изменениями мощности генераторов DРГ,f и потребителей DРП,f в результате последовавшего за возникновением небаланса изменения частоты:

DР = – (DРГ,f – DРП,f)                                                                                                             (40)

Реакцию генераторов и потребителей энергосистемы на изменение частоты, появляющуюся вслед за возникновением первичного небаланса DР, будем называть вторичным небалансом энергосистемы по частоте DРf:

f = (DРГ,f – DРП,f)                                                                                                               (41)

Как следует из (40) и (41), вторичный небаланс энергосистемы равен по величине первичному небалансу и противоположен ему по знаку; его появление компенсирует первичный небаланс и восстанавливает при новой частоте нарушенное равновесие:

DР + DРf = 0.

Глава 3.3. Автоматика и телемеханика (Часть 6)

Раздел 3. Защита и автоматика

(Автоматическое регулирование частоты и активной мощности (АРЧМ))

3.3.63. Системы автоматического регулирования частоты и активной мощности (АРЧМ) предназначены для:

  • поддержания частоты в энергообъединениях и изолированных энергосистемах в нормальных режимах согласно требованиям ГОСТ на качество электрической энергии;
  • регулирования обменных мощностей энергообъединений и ограничения перетоков мощности по контролируемым внешним и внутренним связям энергообъединений и энергосистем;
  • распределения мощности (в том числе экономичного) между объектами управления на всех уровнях диспетчерского управления (между объединенными энергосистемами в «ЕЭС России», энергосистемами в ОЭС, электростанциями в энергосистемах и агрегатами или энергоблоками в пределах электростанций).

3.3.64. Системы АРЧМ должны обеспечивать (при наличии необходимого регулировочного диапазона) на управляемых электростанциях поддержание среднего отклонения частоты от заданного значения в пределах ±0,1 Гц в десятиминутных интервалах и ограничение перетока мощности по контролируемым связям с подавлением не менее чем на 70% амплитуды колебаний перетока мощности с периодом 2 мин и более.

3.3.65. В систему АРЧМ должны входить:

  • устройства автоматического регулирования частоты, обменной мощности и ограничения перетоков на диспетчерских пунктах «ЕЭС России» и ОЭС;
  • устройства распределения управляющих воздействий от вышестоящих систем АРЧМ между управляемым электростанциями и устройства ограничения перетоков по контролируемым внутренним связям на диспетчерских пунктах энергосистем;
  • устройства управления активной мощностью на электростанциях, привлекаемых к участию в автоматическом управлении мощностью;
  • датчики перетоков активной мощности и средства телемеханики.
READ  Компенсация реактивной мощности, теория

3.3.66. Устройства АРЧМ на диспетчерских пунктах должны обеспечивать выявление отклонений фактического режима работы от заданного, формирование и передачу управляющих воздействий для диспетчерских пунктов нижнего уровня управления и для электростанций, привлекаемых к автоматическому управлению мощностью.

3.3.67. Устройства автоматического управления мощностью электростанций должны обеспечивать:

  • прием и преобразование управляющих воздействий, поступающих с диспетчерских пунктов вышестоящего уровня управления, и формирование управляющих воздействий на уровне управления электростанций;
  • формирование управляющих воздействий на отдельные агрегаты (энергоблоки);
  • поддержание мощности агрегатов (энергоблоков) в соответствии с полученными управляющими воздействиями.

3.3.68. Управление мощностью электростанции должно осуществляться со статизмом по частоте, изменяемым в пределах от 3 до 6%.

3.3.69. На гидроэлектростанциях системы управления мощностью должны иметь автоматические устройства, обеспечивающие пуск и останов агрегатов, а при необходимости также перевод агрегатов в режимы синхронного компенсатора и генераторный в зависимости от условий и режима работы электростанций и энергосистемы с учетом имеющихся ограничений в работе агрегатов.

Гидроэлектростанции, мощность которых определяется режимом водотока, рекомендуется оборудовать автоматическими регуляторами мощности по водотоку.

3.3.70. Устройства АРЧМ должны допускать оперативное изменение параметров настройки при изменении режимов работы объекта управления, оснащаться элементами сигнализации, блокировками и защитами, предотвращающими неправильные их действия при нарушении нормальных режимов работы объектов управления, при неисправностях в самих устройствах, а также исключающими те действия, которые могут помешать функционированию устройств противоаварийной автоматики.

На тепловых электростанциях устройства АРЧМ должны быть оборудованы элементами, предотвращающими те изменения технологических параметров выше допустимых пределов, которые вызваны действием этих устройств на агрегаты (энергоблоки).

3.3.71. Средства телемеханики .должны обеспечивать ввод информации о перетоках по контролируемым внутрисистемным и межсистемным связям, передачу управляющих воздействий и сигналов от устройств АРЧМ на объекты управления, а также передачу необходимой информации на вышестоящий уровень управления.

Суммарное значение сигналов в средствах телемеханики и устройствах АРЧМ не должно превышать 5 с.

ПУЭ Глава 3.3. Автоматика и телемеханика

Ваш Удобный дом

Вторичное регулирование частоты (АВРЧМ)

Вторичное регулирование частоты — процесс восстановления планового баланса мощности путём использования вторичной регулирующей мощности для компенсации возникшего небаланса, ликвидации перегрузки транзитных связей, восстановления частоты и использованных при первичном регулировании резервов первичной регулирующей мощности. Вторичное регулирование осуществляется автоматически под воздействием центрального регулятора.

Вторичное регулирование начинается после действия первичного и предназначено для восстановления номинальной частоты и плановых перетоков мощности между энергосистемами в энергообъединении.

В основном во вторичном регулировании участвуют гидроэлектростанции (ГЭС) в связи с их маневренностью. Все крупные ГЭС России подключены к системе АВРЧМ для участия во вторичном регулировании и получают в режиме реального времени (характерный цикл информационного обмена — 1 сек) задание вторичной мощности, которое через групповой регулятор активной мощности (ГРАМ) поступает непосредственно на исполнение системами управления гидроагрегатами.

В период паводка для наиболее экономичного срабатывания паводковой воды в гидротурбинах к АВРЧМ привлекаются и электростанции других типов (ТЭС, ПГУ). Участие ТЭС, ПГУ в АВРЧМ осуществляется в рамках работы рынка системных услуг.

Ссылки по теме

  • Правила технической эксплуатации электроустановок потребителей
    / Нормативный документ от 9 февраля 2007 г. в 02:14
  • Библия электрика
    / Нормативный документ от 14 января 2014 г. в 12:32
  • Справочник по электрическим сетям 0,4-35 кВ и 110-1150 кВ. Том 10 
    / Нормативный документ от 2 марта 2009 г. в 18:12
  • Кабышев А.В., Тарасов Е.В. Низковольтные автоматические выключатели
    / Нормативный документ от 1 октября 2019 г. в 09:22
  • Правила устройства воздушных линий электропередачи напряжением до 1 кВ с самонесущими изолированными проводами
    / Нормативный документ от 30 апреля 2008 г. в 15:00
  • Князевский Б.А. Трунковский Л.Е. Монтаж и эксплуатация промышленных электроустановок
    / Нормативный документ от 17 октября 2019 г. в 12:36
  • Маньков В.Д. Заграничный С.Ф. Защитное заземление и зануление электроустановок
    / Нормативный документ от 27 марта 2020 г. в 09:05

Общие сведения об энергосистеме

Энергосистема – совокупность электростанций, электрических и тепловых сетей, а также потребителей электроэнергии и тепла, связанных общностью режима в непрерывности процессов производства, преобразования, передачи, распределения и потребления электрической и тепловой энергии при общем управлении этими режимами. Электрическая часть энергосистемы называется электроэнергетической системой.

Объединение электроэнергетических систем на параллельную работу дает следующие преимущества:

  • более высокую надежность электроснабжения;
  • использование несовмещения максимумов нагрузки;
  • меньшие резервы мощности из-за возможности передачи электроэнергии из одной энергосистемы в другую;
  • более рациональное использование первичных источников энергии;
  • возможность использования более крупных агрегатов, имеющих более высокий коэффициент полезного действия.

Единая энергетическая система России (ЕЭС России) – совокупность производственных и иных имущественных объектов электроэнергетики, связанных единым процессом производства (в том числе производства в режиме комбинированной выработки электрической и тепловой энергии) и передачи электрической энергии в условиях централизованного оперативно-диспетчерского управления в электроэнергетике. Основная цель создания и развития Единой энергетической системы России состоит в обеспечении надежного и экономичного электроснабжения потребителей на территории России с максимально возможной реализацией преимуществ параллельной работы энергосистем.

READ  Механические характеристики двухдвигательного электропривода

ЕЭС России охватывает практически всю обжитую территорию страны и является крупнейшим в мире централизованно управляемым энергообъединением. В настоящее время ЕЭС России включает в себя 69 энергосистем на территории 79 субъектов российской Федерации, работающих в составе шести работающих параллельно ОЭС – ОЭС Центра, Юга, Северо-Запада, Средней Волги, Урала и Сибири и ОЭС Востока, работающей изолированно от ЕЭС России. Кроме того, ЕЭС России осуществляет параллельную работу с ОЭС Украины, ОЭС Казахстана, ОЭС Белоруссии, энергосистемами Эстонии, Латвии, Литвы, Грузии и Азербайджана, а также с NORDEL (связь с Финляндией через вставку постоянного тока в Выборге). Энергосистемы Белоруссии, России, Эстонии, Латвии и Литвы образуют так называемое «Электрическое кольцо БРЭЛЛ», работа которого координируется в рамках подписанного в 2001 г. Соглашения о параллельной работе энергосистем БРЭЛЛ.

Системный оператор выделяет три крупных независимых энергообъединения в Европе – Северную (NORDEL), Западную (UCTE) и Восточную (ЕЭС/ОЭС) синхронные зоны (NORDEL и UCTE в июле 2009 г. вошли в состав нового европейского объединения – ENTSO-E). Под ЕЭС/ОЭС понимается ЕЭС России в совокупности с энергосистемами стран СНГ, Балтии и Монголии.

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0—2015 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2—2015 «Межгосударственная система стандартизации. Стандарты межгосударственные. правила, рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

1 РАЗРАБОТАН Акционерным обществом «Системный оператор Единой энергетической системы» (АО «СО ЕЭС»)

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 30 июня 2017 г. Ne 100-П)

За принятие проголосовали:

Краткое наименование страны по МК

Код страны

по МК (ИСО 3166) 004-97

Сокращенное наименование национальное органа по стандартизации

Армения

AM

Минэкономики Республики Армения

Беларусь

BY

Госстандарт Республики Беларусь

Казахстан

KZ

Госстандарт Республики Казахстан

Киргизия

KG

Кыргыэствндарт

Россия

RU

Росстандарт

4 Приказом Федерального агентства по техническому регулированию и метрологии от 3 августа 2017 г. № 801 -ст межгосударственный стандарт ГОСТ 34184—2017 введен в действие в качестве национального стандарта с 1 марта 2018 г.

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а текст изменении и поправок — в ежемесячном информационном указателе кНациональные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет ()

Стандартинформ. 2017

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен. тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

ГОСТ 34184—2017

definition — Регулирование_частоты_в_энергосистемах

of Wikipedia

   Advertizing ▼

Wikipedia

Регулирование частоты в энергосистемах

Материал из Википедии — свободной энциклопедии

Перейти к: ,

Регулирование частоты в энергосистеме — процесс поддержания частоты переменного тока в энергосистеме в допустимых пределах. Частота является одним из важнейших показателей качества электрической энергии и важнейшим параметром режима энергосистемы. Частота в энергосистеме определяется балансом вырабатываемой и потребляемой . При нарушении баланса мощности частота изменяется. Если частота в энергосистеме снижается, то необходимо увеличить вырабатываемую на электростанциях активную мощность для восстановления нормального значения частоты. В соответствии с ГОСТ 13109-97 частота должна находиться в пределах 50,0±0,2 Гц не менее 95 % времени суток, не выходя за предельно допустимые 50,0±0,4 Гц.

Выделяют три взаимосвязанных вида регулирования частоты:

  • первичное регулирование частоты (которое, в свою очередь, подразделяется на общее первичное регулирование частоты (ОПРЧ) и нормированное первичное регулирование частоты);
  • вторичное регулирование частоты
  • третичное регулирование частоты.

Системный оператор допускает участие энергоблоков и электростанций одновременно во всех видах регулирования при условии выполнения требований по каждому виду регулирования независимо от одновременности участия в других видах регулирования.Мощность различных электроприёмников по-разному зависит от частоты. Если мощность, потребляемая активной нагрузкой (лампы накаливания и т. д.), от частоты практически не зависит, то мощность реактивной нагрузки существенно зависит от частоты. В целом мощность комплексной нагрузки в энергосистеме уменьшается при снижении частоты, что облегчает задачу регулирования.

READ  Аэс в россии до 2030 года

Планируется, что регулирование частоты будет являться одним из видов услуг на в электроэнергетике.

Первичное регулирование частоты

Первичное регулирование частоты осуществляется автоматическими регуляторами частоты вращения (АРЧВ) турбин (в некоторых источниках используется термин «автоматический регулятор скорости» (АРС)). При изменении частоты вращения турбины такие регуляторы осуществляют воздействие на регулирующие органы турбины (регулирующие клапаны у паровой турбины или направляющий аппарат у гидротурбины), изменяя подачу энергоносителя. При повышении частоты вращения регулятор уменьшает впуск энергоносителя в турбину, а при снижении частоты — увеличивает.

Назначение первичного регулирования заключается в удержании частоты в допустимых пределах при нарушении баланса активной мощности. При этом частота до номинального значения не восстанавливается, что обусловлено статизмом регуляторов.

Общее первичное регулирование частоты

Общее первичное регулирование частоты должно осуществляться всеми электростанциями в меру имеющихся возможностей. В настоящее время в Россиии ТЭЦ, работающие по теплофикационному режиму, и АЭС в ОПРЧ не участвуют.

Нормированное первичное регулирование частоты

Нормированное первичное регулирование частоты — организованная часть первичного регулирования, осуществляемая выделенными для этих целей электростанциями, на которых размещены первичные резервы и обеспечено их эффективное использование.

Вторичное регулирование частоты

Вторичное регулирование частоты — процесс восстановления планового баланса мощности путём использования вторичной регулирующей мощности для компенсации возникшего небаланса, ликвидации перегрузки транзитных связей, восстановления частоты и использованных при первичном регулировании резервов первичной регулирующей мощности. Вторичное регулирование может осуществляться автоматически или по командам диспетчера.

Вторичное регулирование начинается после действия первичного и предназначено для восстановления номинальной частоты и плановых перетоков мощности между энергосистемами в энергообъединении.

Третичное регулирование частоты

Третичное регулирование используется для восстановления резервов первичного и вторичного регулирования и для оказания взаимопомощи энергосистемам при неспособности отдельных энергосистем в составе ОЭС самостоятельно обеспечить вторичное регулирование.

Мониторинг участия электростанций и отдельных энергоблоков в регулировании частоты

В связи с тем, что участие в ОПРЧ является обязательным для всех электростанций, а другие виды регулирования частоты являются оплачиваемой услугой, необходимо осуществлять мониторинг участия электростанций в регулировании.

Это незавершённая статья об энергетике. Вы можете помочь проекту, исправив и дополнив её.

Участие электростанций различного типа в покрытии суммарной нагрузки энергосистем

Суммарные графики нагрузки энергосистем неравномерны. Коэффициент заполнения графиков довольно низок – kзап= 0,5…0,7 – и имеет тенденцию к дальнейшему снижению ввиду появления в энергосистемах новых типов потребителей и изменения структуры энергопотребления.

Распределение нагрузки между отдельными электростанциями с целью покрытия суммарного графика нагрузки энергосистемы производят, исходя из особенностей технологического режима электростанций различного типа, с тем, чтобы получить в целом по системе положительный хозяйственный эффект. При этом в базовую часть графика нагрузки в непаводковый период помещают АЭС, ТЭЦ, частично КЭС, ГЭС без водохранилищ, а также частично ГЭС с водохранилищами. В полупиковую часть графика помещают КЭС, а в пиковую часть – ГЭС. Во время паводка мощность ГЭС в базовой части графика нагрузки увеличивается, с тем, чтобы после заполнения водохранилищ не сбрасывать бесполезно избыток воды через водосливные плотины. При этом большая доля мощности КЭС и частично мощности ТЭЦ вытесняется в полупиковую часть графика нагрузки.

Зная графики нагрузки электростанций, можно планировать ремонт оборудования. Агрегаты ГЭС, как правило, ремонтируют зимой, а ТЭС и АЭС – весной и летом. Изменения нагрузки и установленной мощности электростанции в системе в течение года взаимосвязаны.

В энергосистеме должны быть предусмотрены резервы: эксплуатационный (ремонтный, режимный, аварийный), составляющий примерно 10…12 % установленной мощности энергосистемы, и хозяйственный, составляющий около 3 %. Считается, что для нормального функционирования энергосистемы ее общий резерв должен составлять 13…15 % установленной мощности. На практике разность между установленной мощностью электростанций и их фактической нагрузкой в каждый данный момент не есть резервная мощность энергосистемы в обычном понимании.

С учетом устойчивости и надежности работы энергосистемы мощность наиболее крупного агрегата, как показывает опыт эксплуатации, нормально не должна превышать 1,5…3 % установленной мощности энергосистемы. Следовательно, крупные агрегаты мощностью 500, 800 и 1200 МВт могут устанавливаться только в относительно мощных энергосистемах.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: