Простые примеры использования закона ома

Формула закона Ома для однородного участка цепи

Для создания тока в проводнике нужно создать разницу потенциалов между определенными точками с применением источника питания. Этим действием активизируют перемещение заряженных частиц. Ток направляется в сторону меньшего потенциала, причем электроны будут перемещаться в обратном направлении.

Направление силы тока противоположно движению отрицательно заряженных частиц

Разную полярность можно отобразить соответствующими потенциалами ϕ1(+)>ϕ2(-). Вычитанием определенных величин получают значение напряжения (эдс, электродвижущую силу) на участке созданной цепи:

ϕ1- ϕ2 = U.

В ходе упомянутых практических экспериментов Георг Ом установил прямую зависимость силы тока (I) от увеличения разницы потенциалов. Одновременно было отмечено влияние материала проводника. Этот параметр – электрическое сопротивление (R), по мере увеличения препятствует прохождению тока. Итоговые зависимости выражаются известной формулой:

I = U/R.

«Магический» треугольник помогает запомнить алгоритмы типовых вычислений

На левой стороне рисунка наглядно изображены основные принципы рабочего процесса. Напряжение обеспечивает перемещение заряженных частиц. Сопротивление определяет условия для этого действия. Математическим преобразованием (правая сторона) можно получить формулы (треугольник), чтобы вычислять третий параметр по известным значениям двух других (i u r):

  • R=U/I;
  • U = I * R.

Отмеченное влияние проводника выражают через специальный коэффициент (p), которым обозначают удельное сопротивление. При рассмотрении контрольного образца следует учесть площадь поперечного сечения (S, в мм кв.) и длину (L, м). Итоговая формула для электрического сопротивления на основе перечисленных параметров:

R = p * (L/S).

Ее можно использовать при необходимости в комплексе с зависимостями закона Ома:

I = (U * S)/(p * L).

На основе рассмотренных процессов можно сформулировать энергетические потери, которые создает однородный участок цепи. На перемещение зарядов между двумя точками с разными потенциалами будут потрачена мощность:

P = U * I.

Прямо пропорциональный характер этого математического выражения подчеркивает соответствующую зависимость параметра от напряжения на участке цепи, тока. При необходимости в алгоритм вычислений добавляют электрическое сопротивление.

Закон Ома в дифференциальной форме

Сопротивление R{\displaystyle R} зависит как от материала, по которому течёт ток, так и от геометрических размеров проводника.

Полезно переписать закон Ома в так называемой дифференциальной форме, в которой зависимость от геометрических размеров исчезает, и тогда закон Ома описывает исключительно электропроводящие свойства материала. Для изотропных материалов имеем:

J=σE,{\displaystyle \mathbf {J} =\sigma \mathbf {E} ,}

где:

  • J{\displaystyle \mathbf {J} } — вектор плотности тока,
  • σ{\displaystyle \sigma } — удельная проводимость,
  • E{\displaystyle \mathbf {E} } — вектор напряжённости электрического поля.

Все величины, входящие в это уравнение, являются функциями координат и, в общем случае, времени. Если материал анизотропен, то направления векторов плотности тока и напряжённости могут не совпадать. В этом случае удельная проводимость σij{\displaystyle \sigma _{ij}} является симметричным тензором ранга (1, 1), а закон Ома, записанный в дифференциальной форме, приобретает вид

Ji=∑i=13σijEj.{\displaystyle J_{i}=\sum _{i=1}^{3}\sigma _{ij}E_{j}.}

Раздел физики, изучающий течение электрического тока (и другие электромагнитные явления) в различных средах, называется электродинамикой сплошных сред.

Интерпретация закона Ома

Чтобы обеспечить перемещение зарядов, нужно замкнуть контур. При отсутствии дополнительной силы ток существовать долго не сможет. Потенциалы быстро станут равными. Чтобы поддерживать рабочий режим цепи, нужен дополнительный источник (генератор, аккумуляторная батарея).

Полный контур будет содержать суммарное электрическое сопротивление всех компонентов. Для точных расчетов учитывают потери в проводниках, резистивных элементах, источнике питания.

Сколько напряжения нужно подать для определенной силы тока, вычисляют по формуле:

U = I * R.

Аналогичным образом с помощью рассмотренных отношений определяют иные параметры схемы.

Закон для переменного тока

Классический закон был открыт физиком из Германии Симоном Омом в 1862 году. Проводя эксперименты, он обнаружил связь между током и напряжением. В результате ученый сформулировал утверждение, что сила тока пропорциональна разности потенциалов и обратно пропорциональна сопротивлению. Если в электрической цепи ток уменьшится в несколько раз, то и напряжение в ней станет меньше на столько же.

Математически закон Ома был описан как:

I = U / R, А.

Это выражение справедливо как для синусоидального, так и для постоянного тока. Но такая зависимость величин соответствует идеальной ситуации, в которой не учитываются паразитные составляющие и сопротивление источника тока. В случае же гармоничного сигнала на его прохождение влияет частота, из-за присутствия ёмкостной и индуктивной составляющей в электрической линии.

Поэтому закон Ома для переменного тока описывается формулой:

I = U / Z, где:

  • I — сила переменного тока, А;
  • U — разность потенциалов, В;
  • Z — полное сопротивление цепи, Ом.

Полное сопротивление зависит от частоты гармоничного сигнала и вычисляется по следующей формуле:

Z = ((R+r)2 + (w*L — 1/w*C)2)½ = ((R+r)2+X2)½.

В то же время для переменного сигнала необходимо учитывать амплитудную и частотную составляющую. Поэтому:

P = I *U*cosw*t*cos (w*t+ Ψ), где I, U — амплитудные значения, а Ψ — фазовый сдвиг.

Для анализа процессов в электрических цепях переменного тока вводится понятие комплексного числа. Связанно это со смещением фаз, появляющихся между током, и разностью потенциалов. Обозначается это число латинской буквой j и состоит из мнимой Im и вещественной Re частей.

Так как на активном сопротивлении происходит трансформирование мощности в тепло, а на реактивном она преобразуется в энергию электромагнитного поля, возможны её переходы из любой формы в любую. Можно записать: Z = U / I = z * ej*Ψ.

Отсюда полное сопротивление цепи: Z = r + j * X, где r и x — соответственно активное и реактивное сопротивление. Если же сдвиг фаз принимается равный 90, то комплексное число можно не учитывать.

Закон Ома в интегральной форме

Для работы с этой методикой можно воспользоваться дифференциальным выражением (J = p*E).

Пояснительные данные к интегральной форме расчета

Базовую формулу преобразуют следующим образом:

  1. в обе части добавляют множитель, учитывающий элементарный отрезок длины проводника (dL);
  2. взяв первый интеграл по контрольным точкам, получают итоговое значение для сопротивления: R = p*(L/S);
  3. совмещают две формулы (1 и 2), выполняют математическое преобразование;
  4. интеграл второй части определит значение напряжения.

Итоговый результат соответствует определению классического вывода Ома, где взаимная связь u r I обоснована результатом экспериментов (I = U/R).

Законы Кирхгофа

Законы Кирхгофа (или правила Кирхгофа) — соотношения, которые выполняются между токами и напряжениями на участках любой электрической цепи. Правила Кирхгофа позволяют рассчитывать любые электрические цепи постоянного и квазистационарного тока. Имеют особое значение в электротехнике из-за своей универсальности, так как пригодны для решения любых электротехнических задач. Применение правил Кирхгофа к цепи позволяет получить систему линейных уравнений относительно токов, и соответственно, найти значение токов на всех ветвях цепи.

Для формулировки законов Кирхгофа, в электрической цепи выделяются узлы — точки соединения трёх и более проводников и контуры — замкнутые пути из проводников. При этом каждый проводник может входить в несколько контуров. В этом случае законы формулируются следующим образом.

Первый закон (ЗТК, Закон токов Кирхгофа) гласит, что алгебраическая сумма токов в любом узле любой цепи равна нулю (значения вытекающих токов берутся с обратным знаком):

Иными словами, сколько тока втекает в узел, столько из него и вытекает. Данный закон следует из закона сохранения заряда. Если цепь содержит p узлов, то она описывается p − 1 уравнениями токов. Этот закон может применяться и для других физических явлений (к примеру, водяные трубы), где есть закон сохранения величины и поток этой величины.

Второй закон (ЗНК, Закон напряжений Кирхгофа) гласит, что алгебраическая сумма падений напряжений по любому замкнутому контуру цепи равна алгебраической сумме ЭДС, действующих вдоль этого же контура. Если в контуре нет ЭДС, то суммарное падение напряжений равно нулю:

для постоянных напряжений:

для переменных напряжений:

Иными словами, при обходе цепи по контуру, потенциал, изменяясь, возвращается к исходному значению. Если цепь содержит ветвей, из которых содержат источники тока ветви в количестве , то она описывается уравнениями напряжений. Частным случаем второго правила для цепи, состоящей из одного контура, является закон Ома для этой цепи.

Законы Кирхгофа справедливы для линейных и нелинейных цепей при любом характере изменения во времени токов и напряжений.

На этом рисунке для каждого проводника обозначен протекающий по нему ток (буквой «I») и напряжение между соединяемыми им узлами (буквой «U»)

Например, для приведённой на рисунке цепи, в соответствии с первым законом выполняются следующие соотношения:

Обратите внимание, что для каждого узла должно быть выбрано положительное направление, например здесь, токи, втекающие в узел, считаются положительными, а вытекающие — отрицательными. В соответствии со вторым законом, справедливы соотношения:

В соответствии со вторым законом, справедливы соотношения:

Если направление тока совпадает с направлением обхода контура (которое выбирается произвольно), перепад напряжения считается положительным, в противном случае — отрицательным.

Законы Кирхгофа, записанные для узлов и контуров цепи, дают полную систему линейных уравнений, которая позволяет найти все токи и напряжения.

Существует мнение, согласно которому «Законы Кирхгофа» следует именовать «Правилами Кирхгофа», ибо они не отражают фундаментальных сущностей природы (и не являются обобщением большого количества опытных данных), а могут быть выведены из других положений и предположений.

Закон Ома для неоднородного участка цепи

В реальных условиях для поддержания перемещения зарядов с определенной интенсивностью необходимо приложение сторонних сил, а не только кулоновских. Рассмотренный ниже пример демонстрирует участок замкнутой цепи, который называют неоднородным.

Описание закона

Формулировка этого принципа справедлива для любых двух точек цепи, по которой проходит электрический ток. Для этого примера формула Ома принимает следующий вид:

I = U12/R, где U12 обозначает напряжение между контрольными точками.

С учетом отмеченных на рисунке параметров можно преобразовать итоговое выражение следующим образом:

I = ((ϕ1- ϕ2) ± E)/R12,

где:

  • ϕ1- ϕ2 – разница потенциалов;
  • Eип – электродвижущая сила, которую характеризуют величина и определенная полярность;
  • R12 – полное электрическое сопротивление (проводник + источник ЭДС).

Для пояснения полученного результата следует отметить наличие кулоновских и сторонних сил с векторами ЭДС Eq и Est, соответственно. При перемещении определенного заряда (q) между контрольными точками (1-2) по проводнику будет выполнена работа A12. Зависимости между этими величинами величины можно определить простой формулой:

A12/q = ϕ1 – ϕ2.

Так как ЭДС на участке будет равна работе по перемещению q, справедливо выражение:

Ast/q = E12.

Суммарное значение выполненных действий будет равно напряжению:

U = A12/q + Aип/q = ϕ1 – ϕ2 + E12.

После математического преобразования по закону Ома формула приобретает вид:

I = ((ϕ1- ϕ2) ± E)/R12.

Важно! Значение ЭДС может быть положительным либо отрицательным. Соответствующие изменения зависят от подключения источника в участок с определенной полярностью

Для корректного применения представленных правил можно рассмотреть пример расчета со следующими исходными данными:

  • ЭДС – Eип = 5 V;
  • потенциалы в отдельных точках – ϕ1 (ϕ2) = 20V (8V);
  • электрическое сопротивление цепи – R12 = 4 Ом;
  • сопротивление источника питания – Rип = 2 Ом.

Так как направление тока при замыкании цепи выбирается от большего потенциала к меньшему, по представленной на рис. выше схеме ЭДС берут со знаком «минус». Подставленные в рассмотренную формулу исходные данные помогут сделать следующее вычисление:

I = ((ϕ1- ϕ2) – Eип)/(R12 + Rип) = (20 – 8 – 5)/(4 + 2) = 7/6 ≈ 1,17 А.

К сведению. Обратный вариант включения ЭДС при аналогичных исходных параметрах сопровождается изменением знака на «минус».

Формула Закона Джоуля-Ленца

Величину резистора для изготовления блока нагрузки для блока питания компьютера мы рассчитали, но нужно еще определить какой резистор должен быть мощности? Тут поможет другой закон физики, который, независимо друг от друга открыли одновременно два ученых физика. В 1841 году Джеймс Джоуль, а в 1842 году Эмиль Ленц. Этот закон и назвали в их честь – Закон Джоуля-Ленца.

Потребляемая нагрузкой мощность прямо пропорциональна приложенной величине напряжения и протекающей силе тока. Другими словами, при изменении величины напряжения и тока будет пропорционально будет изменяться и потребляемая мощность.

где P – мощность, измеряется в ваттах и обозначается Вт; U – напряжение, измеряется в вольтах и обозначается буквой В; I – сила ток, измеряется в амперах и обозначается буквой А.

Зная напряжения питания и силу тока, потребляемую электроприбором, можно по формуле определить, какую он потребляет мощность. Достаточно ввести данные в окошки ниже приведенного онлайн калькулятора.

Онлайн калькулятор для определения потребляемой мощности
Напряжение, В:
Сила тока, А:

Закон Джоуля-Ленца позволяет также узнать силу тока, потребляемую электроприбором зная его мощность и напряжение питания. Величина потребляемого тока необходима, например, для выбора сечения провода при прокладке электропроводки или для расчета номинала.

Онлайн калькулятор для определения силы тока в зависимости от потребляемой мощности
Потребляемая мощность, Вт:
Напряжение питания, В:

Например, рассчитаем потребляемый ток стиральной машины. По паспорту потребляемая мощность составляет 2200 Вт, напряжение в бытовой электросети составляет 220 В. Подставляем данные в окошки калькулятора, получаем, что стиральная машина потребляет ток величиной 10 А.

Еще один пример, Вы решили в автомобиле установить дополнительную фару или усилитель звука. Зная потребляемую мощность устанавливаемого электроприбора легко рассчитать потребляемый ток и правильно подобрать сечение провода для подключения к электропроводке автомобиля. Допустим, дополнительная фара потребляет мощность 100 Вт (мощность установленной в фару лампочки), бортовое напряжение сети автомобиля 12 В. Подставляем значения мощности и напряжения в окошки калькулятора, получаем, что величина потребляемого тока составит 8,33 А.

Разобравшись всего в двух простейших формулах, Вы легко сможете рассчитать текущие по проводам токи, потребляемую мощность любых электроприборов – практически начнете разбираться в основах электротехники.

Историческая справка

Год открытия Закон Ома — 1826 немецким ученым Георгом Омом. Он эмпирически определил и описал закон о соотношении силы тока, напряжения и типа проводника. Позже выяснилось, что третья составляющая – это не что иное, как сопротивление. Впоследствии этот закон назвали в честь открывателя, но законом дело не ограничилось, его фамилией и назвали физическую величину, как дань уважения его работам.

Величина, в которой измеряют сопротивление, названа в честь Георга Ома. Например, резисторы имеют две основные характеристики: мощность в ваттах и сопротивление – единица измерения в Омах, килоомах, мегаомах и т.д.

Простые примеры расчета

Бытовая сеть переменного тока

Пример №1. Проверка ТЭНа.

В стиральную машину встроен трубчатый электронагреватель 1,25 кВт на 220 вольт. Требуется проверить его исправность замером сопротивления.По мощности рассчитываем ток и сопротивление.

Проверяем расчет сопротивления калькулятором по току и напряжению. Данные совпали. Можно приступать к электрическим замерам.

Пример №2. Проверка сопротивления двигателя

Допустим, что мы купили моющий пылесос на 1,6 киловатта для уборки помещений. Нас интересует ток его потребления и сопротивление электрического двигателя в рабочем состоянии. Считаем ток:

Вводим в графы калькулятора напряжение 220 вольт и ток 7,3 ампера. Запускаем расчет. Автоматически получим данные:

  • сопротивление двигателя — 30,1 Ома;
  • мощность 1600 ватт.

Цепи постоянного тока

Рассчитаем сопротивление нити накала галогенной лампочки на 55 ватт, установленной в фаре автомобиля на 12 вольт.

Считаем ток:

Вводим в калькулятор 12 вольт и 4,6 ампера. Он вычисляет:

  • сопротивление 2,6 ома.
  • мощность 5 ватт.

Здесь обращаю внимание на то, что если замерить сопротивление в холодном состоянии мультиметром, то оно будет значительно ниже. Это свойство металлов позволяет создавать простые и относительно дешевые лампы накаливания без сложной пускорегулирующей аппаратуры, необходимой для светодиодных и люминесцентных светильников

Это свойство металлов позволяет создавать простые и относительно дешевые лампы накаливания без сложной пускорегулирующей аппаратуры, необходимой для светодиодных и люминесцентных светильников.

Другими словами: изменение сопротивления вольфрама при нагреве до раскаленного состояния ограничивает возрастание тока через него. Но в холодном состоянии металла происходит бросок тока. От него нить может перегореть.

Для продления ресурса работы подобных лампочек используют схему постепенной, плавной подачи напряжения от нуля до номинальной величины.

В качестве простых, но надежных устройств для автомобиля часто используется релейная схема ограничения тока, работающая ступенчато.

При включении выключателя SA сопротивление резистора R ограничивает бросок тока через холодную нить накала. Когда же она разогреется, то за счет изменения падения напряжения на лампе HL1 электромагнит с обмоткой реле KL1 поставит свой контакт на удержание.

Он зашунтирует резистор, чем выведет его из работы. Через нить накала станет протекать номинальный ток схемы.

Мнемоническая диаграмма для закона Ома

Схема, иллюстрирующая три составляющие закона Ома

Диаграмма, помогающая запомнить закон Ома. Нужно закрыть искомую величину, и два других символа дадут формулу для её вычисления

U — электрическое напряжение;I — сила тока;P — электрическая мощность;R — электрическое сопротивление

В соответствии с этой диаграммой формально может быть записано выражение:

R=UI,(7){\displaystyle R\!={U \over I},\qquad (7)}

которое всего лишь позволяет вычислить (применительно к известному току, создающему на заданном участке цепи известное напряжение), сопротивление этого участка. Но математически корректное утверждение о том, что сопротивление проводника растёт прямо пропорционально приложенному к нему напряжению и обратно пропорционально пропускаемому через него току, физически ложно.

В специально оговорённых случаях сопротивление может зависеть от этих величин, но по умолчанию оно определяется лишь физическими и геометрическими параметрами проводника:

R=ϱls,(8){\displaystyle R\!={\varrho l \over s},\qquad (8)}

где:

  • ϱ{\displaystyle \varrho } — удельное электрическое сопротивление материала, из которого сделан проводник,
  • l{\displaystyle l} — его длина
  • s{\displaystyle s} — площадь его поперечного сечения

Закон Ома и ЛЭП

Одним из важнейших требований к линиям электропередачи (ЛЭП) является уменьшение потерь при доставке энергии потребителю. Эти потери в настоящее время заключаются в нагреве проводов, то есть переходе энергии тока в тепловую энергию, за что ответственно омическое сопротивление проводов. Иными словами, задача состоит в том, чтобы довести до потребителя как можно более значительную часть мощности источника тока P{\displaystyle P} = εI{\displaystyle {\varepsilon \!I\!}} при минимальных потерях мощности в линии передачи P(r)=UI,{\displaystyle P(r)=UI,} где U=Ir,{\displaystyle U\!=Ir,} причём r{\displaystyle r} на этот раз есть суммарное сопротивление проводов и внутреннего сопротивления генератора (последнее всё же меньше сопротивления линии передач).

В таком случае потери мощности будут определяться выражением

P(r)=P2rε2.(9){\displaystyle P(r)={\frac {P^{2}r}{\varepsilon ^{2}}}.\qquad (9)}

Отсюда следует, что при постоянной передаваемой мощности её потери растут прямо пропорционально длине ЛЭП и обратно пропорционально квадрату ЭДС. Таким образом, желательно всемерное увеличение ЭДС. Однако ЭДС ограничивается электрической прочностью обмотки генератора, поэтому повышать напряжение на входе линии следует уже после выхода тока из генератора, что для постоянного тока является проблемой. Однако для переменного тока эта задача много проще решается с помощью использования трансформаторов, что и предопределило повсеместное распространение ЛЭП на переменном токе. Однако при повышении напряжения в линии возникают потери на коронирование и возникают трудности с обеспечением надёжности изоляции от земной поверхности. Поэтому наибольшее практически используемое напряжение в дальних ЛЭП обычно не превышает миллиона вольт.

Кроме того, любой проводник, как показал Дж. Максвелл, при изменении силы тока в нём излучает энергию в окружающее пространство, и потому ЛЭП ведёт себя как антенна, что заставляет в ряде случаев наряду с омическими потерями брать в расчёт и потери на излучение.

Закон Ома для участка цепи

Для описания электрической цепи не содержащего ЭДС можно использовать закон Ома для участка цепи. Это наиболее простая форма записи. Он выглядит так:

Где I – это ток, измеряется в Амперах, U – напряжение в вольтах, R – сопротивление в Омах.

Такая формула нам говорит, что ток прямопропорционален напряжению и обратнопропорционален сопротивлению – это точная формулировка Закона Ома. Физический смысл этой формулы – это описать зависимость тока через участок цепи при известном его сопротивлении и напряжении.

Внимание!
Эта формула справедлива для постоянного тока, для переменного тока она имеет небольшие отличия, к этому вернемся позже.

Кроме соотношения электрических величин данная форма нам говорит о том, что график зависимости тока от напряжения в сопротивлении линеен и выполняется уравнение функции:

f(x) = ky или f(u) = IR или f(u)=(1/R)*I

Закон Ома для участка цепи применяют для расчетов сопротивления резистора на участке схемы или для определения тока через него при известном напряжении и сопротивлении. Например, у нас есть резистор R сопротивлением в 6 Ом, к его выводам приложено напряжение 12 В. Необходимо узнать, какой ток будет протекать через него. Рассчитаем:

I=12 В/6 Ом=2 А

Идеальный проводник не имеет сопротивления, однако из-за структуры молекул вещества, из которого он состоит, любое проводящее тело обладает сопротивлением. Например, это стало причиной перехода с алюминиевых проводов на медные в домашних электросетях. Удельное сопротивление меди (Ом на 1 метр длины) меньше чем алюминия. Соответственно медные провода меньше греются, выдерживают большие токи, значит можно использовать провод меньшего сечения.

Еще один пример — спирали нагревательных приборов и резисторов обладают большим удельным сопротивлением, т.к. изготавливаются из разных высокоомных металлов, типа нихрома, кантала и пр. Когда носители заряда движутся через проводник, они сталкиваются с частицами в кристаллической решетке, вследствие этого выделяется энергия в виде тепла и проводник нагревается. Чем больше ток – тем больше столкновений – тем больше нагрев.

Чтобы снизить нагрев проводник нужно либо укоротить, либо увеличить его толщину (площадь поперечного сечения). Эту информацию можно записать в виде формулы:

R провод =ρ(L/S)

Где ρ – удельное сопротивление в Ом*мм 2 /м, L – длина в м, S – площадь поперечного сечения.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: