Характеристика показателей качества электроэнергии

Ощутимые перепады

Измерения качества электроэнергии предусматривают замеры такой составляющей, как импульсы питающего напряжения. Он объясняется резкими спадами и подъемами электричества в пределах выбранного интервала. Причинами такого явления может быть одновременная коммутация большого числа потребителей, влияние электромагнитных помех из-за грозы.

Установлены периоды восстановления напряжения, не влияющие на работу потребителей:

  • Причины перепадов — это гроза и другие природные электромагнитные помехи. Период восстановления равен не более 15 мкс.
  • Если импульсы появились из-за неравномерной коммутации потребителей, то период намного больше и равен 15 мс.

Наибольшее число аварий на подстанциях происходит по причине удара молнии в установку. Сразу страдает изоляция проводников. Величина перенапряжения может достигать сотен киловольт. Для этого предусмотрены защитные приспособления, но иногда они не выдерживают, и наблюдается остаточный потенциал. В эти моменты неисправность не возникает благодаря прочности изоляции.

Проблема № 3. Низкий коэффициент мощности

Как известно, электрическая энергия, вырабатываемая генераторами электростанций, характеризуется их активной и реактивной мощностью. Первая величина потребляется электроприёмниками, переходя в механическую работу, тепловую и другие виды энергии. Реактивная мощность характеризует электроэнергию, преобразуемую в энергию электрических и магнитных полей в элементах сети. Качество электрической энергии напрямую зависит от активной составляющей нагрузки, которая выражается в значении так называемого коэффициента мощности  или cos φ1 . Как правило, из-за наличия реактивной составляющей активная мощность не равна полной, поэтому cos φ обычно меньше единицы.

«Низкие значения коэффициента мощности невыгодны энергосетевым компаниям, т. к. из-за этого увеличиваются потери в электрических сетях, – продолжает Сергей Генералов. – Поэтому при подключении промышленных потребителей их техническими условиями на подключение обязывают устанавливать у себя устройства компенсации реактивной мощности. Вообще, каждое предприятие в масштабах страны должно заботиться не только об энергоэффективности, но и об экономии электроэнергии».

На предприятиях, где используются станки, компрессоры, насосы, сварочные трансформаторы, электропечи, электролизные установки и прочие потребители энергии с резкопеременной нагрузкой, cos φ постоянно колеблется от 0,5 до 0,8. Для компенсации реактивной мощности в таких условиях, устранения просадок напряжения, вызванных пусковыми режимами мощной нагрузки, и устранения фликера 2 необходимо применять установки компенсации реактивной мощности, например, быстродействующие фильтрокомпенсирующие устройства (ФКУ). Они представляют собой конденсаторные батареи, последовательно соединенные с фильтровыми реакторами с резисторами или без них.

В качестве примера использования фильтрокомпенсирующих устройств ФКУ Дмитрий Чайка приводит автономные системы электроснабжения буровых установок от дизель-генераторов. По утверждению специалиста, внедрение ФКУ Dynacomp в этом случае позволяет существенно снизить потери и, как следствие, уменьшить потребление дизельного топлива за счёт компенсации реактивной составляющей тока нагрузки, стабилизации напряжения и частичного снижения токов высших гармоник.

Рис. 5. Фильтрокомпенсирующее устройство

Как проводится контроль качества?

Главная цель, с которой проводится контроль качества электроэнергии — выявление дефектов электрической сети и причин их возникновения.

Для установления параметров производится подсоединение анализаторов в электрическую систему. Места контроля — точки подключения к общей сети потребителей. В собственных сетях потребители проводят измерения в ближайших к этим точкам местах.

Анализатор качества электроэнергии принимает информацию на входе о значениях напряжений и токов в зависимости от времени. Полученные данные обрабатываются при помощи математических алгоритмов, что позволяет рассчитать требуемые параметры, произвести анализ качества электроэнергии, а также установить ее количество, проходящее через точку подключения за заданный временной интервал.

Периодичность проведения контроля для всех показателей составляет один раз в два года, а для отклонения напряжения – дважды в год, так как именно низкое напряжение – основная причина плохого качества электроэнергии.

Рассмотрение основных показателей

Качество электроэнергии определяют уровнем соотношения установленным значениям определенных показателей. Все параметры электрической энергии большую часть времени в сутках (95%) должны соответствовать нормальным установленным значениям и не превышать данный предел.

ГОСТ 13109-87 разделяет показатели качества на два категории: основные и дополнительные. Основные определяют свойства электроэнергии. В данную подгруппу входит 9 характеристик напряжения и 1 характеристика частоты. Рассмотрим ряд основных показателей более подробно.

Отклонение напряжения. Оказывает наибольшее влияние на работу потребителей. Нагрузки, уровни напряжения и другие параметры способны изменяться во времени. Исходя из этого, значение падения напряжения также является переменным. При этом, значительное снижение напряжения на промышленных предприятиях оказывает негативное воздействие на общую производительность труда, отрицательно сказывается на зрении рабочего персонала. Также, снижение напряжения оказывает влияние на продолжительность большинства технологических процессов в электротермической и электролизной установках. Помимо этого, несоответствие уровня напряжения необходимым значениям приводит к потере напряжения и мощности.

В сетях до 1 кВ допустимое отклонение напряжения ±5 %, максимальное ±10 %. В сетях 6-20 кВ принята величина максимального отклонения ±10 %.

Размах изменения напряжения. Этот параметр качества электроэнергии представляет собой разницу между амплитудным или действующим значением перед и после его изменения. Частота повторения данных изменений может быть от 2 раз/мин. до 1 раза/ч. Столь резкие изменения в трехфазной сети могут быть вызваны, к примеру, работой дуговой сталеплавильной печи либо сварочного аппарата. Нормирование колебаний напряжения основывается на необходимости защиты зрения людей. Для каждого вида ламп устанавливается свое отдельное значение размаха. Чтобы обеспечить соблюдение данного показателя качества рекомендуется применять отдельное питание для электроприемников сети освещения и силовых нагрузок.

Доза колебаний напряжения, которая является аналогом предыдущего показателя качества электрической энергии, они взаимозаменяемы. Нормирование дозы колебаний в электросетях проводится только при наличии в них определенных приборов.

Длительность провала напряжения. Провалом является резкое уменьшение напряжения, после чего оно обратно восстанавливается до своей изначальной, либо приближенной величины спустя определенный временной промежуток. Длительность провала отражает время от начального момента провала до момента его восстановления. Продолжительность провала может быть как в один период, так и в десятки секунд. Согласно ГОСТ этот параметр может достигать 30 секунд в сетях до 20 000 Вольт.

Импульсное напряжение схоже по описанию провалу, однако его продолжительность иная, и составляет от нескольких микросекунд до десяти миллисекунд. Допустимые значения данного показателя качества электроэнергии стандартом не нормируется.

Характеристиками напряжения также являются четыре коэффициента: гармонической составляющей, несинусоидальности кривой, нулевой и обратной последовательности.

Характеристикой частоты выступает отклонение. Наибольшее отклонение частоты возникает, если нагрузки изменяются медленным темпом, а резерв мощности невелик. Нормальная допустимая величина отклонения ± 0,2 Герц, максимальная ± 0,4 Герц. В послеаварийных режимах допустим интервал отклонения от + 0,5 до — 1 Герц (не более девяноста часов в году).

Дополнительные показатели качества электроэнергии являются формой записи основных. Сюда входят 3 следующих коэффициента, характеризующих напряжение: амплитудной модуляции, а также небаланса фазных и междуфазных напряжений.

Методы измерения

Существует три основных вида приборов, с помощью которых можно осуществить замеры показателей:

  • измеряющие — представляют собой токоизмерительные клещи, имеющие блок индикации; определяют только номинальные значения параметров, применяются для ежедневного контроля;
  • анализирующие — помимо определения номинальных параметров способны проводить анализ фазного дисбаланса, потерь, способны оценивать энергетические потери; применяют для осуществления разовых замеров;
  • регистрирующие — являются стационарными приборами, выполняют те же функции, что и анализирующие приборы, но за продолжительное время; они позволяют строить любые необходимые графики.

Для обеспечения надежности функционирования энергосистем необходимо соответствие показателей качества электроэнергии определенным требованиям. Для этого производится их нормирование. Чтобы своевременно отслеживать соответствие параметров нормативным значениям необходимо осуществление контроля. Контроль качества проводит рабочий персонал энергетических предприятий.

Продолжительность замера каждого показателя составляет не менее двадцати четырех часов, при этом, периодичность контроля установлена международным государственным стандартом и составляет 1 раз в два года, кроме отклонения напряжения (2 раза в год).

Более подробно данный вопрос рассмотрен на видео:

Вот мы и рассмотрели основные показатели качества электроэнергии, их нормирование и методы измерения. Надеемся, предоставленная информация была для вас интересной и познавательной!

Будет полезно прочитать:

  • Что такое перенапряжение в сети
  • Приборы для измерения сопротивления заземления
  • Причины потерь электроэнергии в сетях

Размах изменения питающей сети

Нормы качества электроэнергии содержат надзор за таким параметром, как колебание составляющих напряжения. Он устанавливает разницу между верхним порогом амплитуды и нижним. Учитывая, что допуски отклонения параметра от установленного укладываются в предел ±5 %, то размах предельный режим не может превышать ±10 %. Питающая сеть 220 В не может колебаться более или менее 22 В, а 380 В работает нормально в границах ±38 В.

Результирующий размах колебаний напряжения рассчитывается по следующему выражению ΔU = Umax−Umin, в нормативах результаты указываются в % согласно расчетам ΔU = ((Umax−Umin)/Unominal)*100%.

Средства измерения и принцип их действия

Измерение величин и проверку их соответствия нормам выполняет специальный прибор — анализатор качества электроэнергии.

В конструкцию прибора включен измеритель электрических величин, несколько раз за короткие временные интервалы фиксирующий напряжения и токи. Принцип его работы получил название “стробирование” или “сэмплирование”.

Выполняющаяся с использованием современных средств измерений проверка качества электроэнергии позволяет получить о системе следующую информацию:

  • токи и пиковые нагрузки мощности сети;
  • определение времени суток с наибольшей потребностью системы в электрической энергии;
  • время падения и провалов напряжения;
  • величина несимметрии и искажения кривых тока и напряжения системы;
  • различные переходные процессы в сети;
  • сложившееся в процессе функционирования сети постоянное отклонение уровня напряжения.

Анализаторы качества электроэнергии производятся в мобильном и стационарном исполнении

Ими могут осуществляться разовые проверки или постоянная оценка соответствия, имеющая важное значение для обнаружения некорректной работы звеньев распределительной системы и выявления неполадок

Проблема № 4. Необходимость накопления энергии

ГРЭС всегда должны держать в резерве мощности для случаев бросков нагрузок или аварийных отключений генераторов. Решением могут стать устройства хранения энергии (УХЭ), работа которых координируется внешней системой управления электростанции.

«Резерв мощности выгодно иметь и предприятиям — он позволяет при крупных авариях избежать простоя технологических линий, а также повысить энергоэффективность производства», — считает Дмитрий Чайка. В качестве примера устройства хранения энергии специалист привёл оборудование PCS 100 ESS, рассчитанное на широкий диапазон мощностей (от 25 кВА до 20 МВА переменного тока). Такие устройства подключаются на разных уровнях напряжения. Кроме того, система PCS 100 ESS имеет возможность работы в режиме динамического контроля потока мощности, когда генерируется требуемый уровень активной и реактивной мощности. Такой режим позволяет выравнивать график среднесуточного потребления за счёт сглаживания пиковых нагрузок (см. рис. 6), что, в конечном итоге, ведёт к сокращению оплаты за электроэнергию на предприятиях. Если учесть, что стоимость последней для промышленных потребителей может значительно вырасти с 1 июля 2013 г., необходимость применения устройств хранения энергии становится очевидной.

Рис. 6. Выравнивание графика среднесуточного потребления при помощи устройства хранения энергии

Использование УХЭ выгодно и гарантированным поставщикам электроэнергии – так как внедрение подобного оборудования ведёт к снижению инвестиционных затрат при строительстве новых объектов за счёт компенсации пикового потребления, а также повышает эффективность работы трансформаторных подстанций (ТП).

Например, при строительстве ТП по заявленной мощности потребителей и последующем внедрении со стороны нагрузки, т.е. предприятия, собственной распределённой генерации, увеличиваются потери поставщика (теряется выгода, не окупаются эксплуатационные затраты). Применение УХЭ в пунктах распределения энергии ведёт к снижению доли вынужденной генерации, замене резервных/пиковых традиционных энергоблоков малой и средней мощности (до 50 МВт) и уменьшению стоимости владения. Так, эксплуатационные затраты систем газовой генерации составляют 2000 € в месяц, угольной генерации – 1000 €, а УХЭ – 0 € (без учёта заработной платы обслуживающего персонала).

Области применения устройств хранения энергии — Улучшение параметров качества электроэнергии, стабилизация частоты и напряжения в системе электроснабжения; — Увеличение пропускной способности линий при передаче и распределении энергии; — Выравнивание графиков среднесуточного энергопотребления за счёт параллельной работы с сетью в период пиковых нагрузок; — Резервирование традиционных централизованных генерирующих мощностей; — Интеграция возобновляемых источников энергии в существующие системы электроснабжения; — Реализация гибридных микросетей и автономного электроснабжения с возможностью интеграции в одной системе как традиционных источников энергии (дизельные, газопоршневые электростанции), так и возобновляемых (солнечные панели, ветрогенераторы).

Рис. 7. Устройство хранения энергии

К сожалению, нужно признать, что на сегодняшний день предприятия неохотно внедряют у себя технологии, способствующие повышению эффективности производства за счёт улучшения качества энергии. Но, сэкономив на установке инновационных приборов, повышающих КЭ, придётся закладывать немалые расходы на ремонт технологического оборудования производственных линий. Может снизиться качество выпускаемой продукции, а соответственно, и спрос. Если задуматься обо всех вышеперечисленных факторах, становится очевидным – повышать эффективность и успешность производства необходимо одновременно с улучшением показателей качества поступающей электроэнергии и совершенствованием надёжности системы электроснабжения.

1 Отношение активной и полной мощности нагрузки расчётного участка.

2 Колебание светового потока искусственных источников излучения.

Виды защиты от непредсказуемых изменений в питающей сети

Повышение качества электроэнергии нужно проводить в определенные законом сроки. Но защиту своего оборудования потребитель вправе выстраивать применением следующих средств:

  • Стабилизаторы питания гарантируют поддержание входной величины в указанных границах. Достигается качественная энергия даже при отклонениях входной величины более чем на 35 %.
  • Источники бесперебойного питания предназначены для поддержания работоспособности потребителя в течение установленного промежутка времени. Питание приборов происходит за счет накопленной энергии в собственной батарее. При отключении электричества, бесперебойники способны поддерживать работоспособность аппаратуры целого офиса в течение нескольких часов.
  • Приборы защиты от скачков напряжения работают по принципу реле. После превышения входной величины установленного предела происходит размыкание цепи.

Все виды защиты приходится комбинировать для обеспечения полной уверенности в том, что дорогостоящая техника останется целой во время аварии на подстанции.

Что влияет на характеристики питающей сети?

Качество электроэнергии зависит от огромного числа факторов, изменяющих показатели сверх установленных нормативами пределов. Так, напряжение может оказаться завышенным из-за аварии на подстанции. Заниженные значения появляются в вечернее время суток или в летний сезон, когда люди возвращаются домой и включают телевизоры, электрические плиты, сплит-системы.

Качество электроэнергии согласно ГОСТам может незначительно колебаться. В очень плохих питающих сетях потребителям приходится пользоваться стабилизаторами напряжения. Контроль над характеристиками возложен на Роспотребнадзор, куда можно обращаться при возникающих несоответствиях.

Качество электроэнергии может зависеть от следующих факторов:

  • Суточных колебаний, связанных с неравномерным подключением потребителями либо с влиянием приливов и отливов на морских станциях.
  • Изменениями воздушной среды: влажности, образование льда на питающих проводах.
  • Изменением ветра, когда питание вырабатывают ветровики.
  • Качеством проводки, со временем она изнашивается.

Проблема № 2. Наличие высших гармоник в сети

Качество электроэнергии определяется амплитудой, частотой и наличием искажения формы сигнала, идущего от системы электроснабжения. «В то время как первые две характеристики в значительной мере зависят от электроснабжающей компании, форма волны (напряжения или тока) искажается потребителями.  Ведь в настоящее время большинство типовых нагрузок на предприятиях являются нелинейными, например, работа частотно-регулируемых приводов, выпрямителей, ИБП, компьютеров, энергосберегающих ламп и т.д. Вышеперечисленные устройства потребляют ток источника, не соответствующий форме волны напряжения, в итоге она искажается высшими гармониками», — поясняет Виталий Побокин, главный инженер проектов компании

«Электромонтажгрупп». Высшие гармоники являются растущей проблемой для поставщиков и потребителей электроэнергии, так как ведут к:

  • снижению эффективности и увеличению энергопотребления;
  • перегреву кабелей, электродвигателей и трансформаторов;
  • повреждению чувствительного оборудования;
  • срабатыванию автоматических выключателей;
  • выгоранию предохранителей;
  • преждевременному износу оборудования;
  • перегреву и выходу из строя конденсаторов;
  • появлению сильных токов в нейтральных проводах;
  • возникновению резонанса в сети;
  • отказу в подключении к электроснабжающим сетям в случае слишком высокого уровня гармоник.

На сегодняшний день самым современным и эффективным решением по компенсации высших гармонических составляющих является использование активных фильтров (АФГ). Они строятся, например, на модулях IGBT (биполярный транзистор с изолированным затвором) и цифровых сигнальных процессорах (ЦСП).

Принцип применения АФГ прост: силовая электроника используется для генерирования гармонических токов, в противофазе тока гармоник, вызванных работой нелинейных нагрузок, таким образом, чтобы синусоида сохраняла максимально правильную форму.

Рис. 3. Схема подключения активного фильтра гармоник

При помощи трансформаторов тока измеряется ток нагрузки, который анализируется ЦСП для определения картины спектра гармоник. Полученные данные используются генератором тока для производства и инжекции в сеть именно такой гармонической величины (по амплитуде, форме и фазе), которая необходима для компенсации искажений нагрузки в следующем цикле синусоиды тока.

Так как активный фильтр работает на основе данных, получаемых от трансформатора, оборудование динамически адаптируется к изменениям в гармониках нагрузки. В связи с тем, что процессы анализа и генерирования контролируются программным обеспечением, устройство легко программируется на компенсацию только отдельных гармоник.

Рис. 4. Активные фильтры гармоник

Отклонение частоты

Соблюдение частоты в определенных границах относится к необходимому требованию потребителя. При снижении показателя на 1 %, потери составляют более 2 %. Это выражается в экономических затратах, снижение производительности предприятий. Для обычного человека это приводит к повышенным суммам в квитанциях по оплате за электричество.

Скорость вращения асинхронного двигателя напрямую зависит от частоты питающей сети. Нагревающие ТЭНы имеют меньшую производительность при снижении параметра меньше 50 ГЦ. При завышенных значениях может происходить повреждение потребителей либо других механизмов, не рассчитанных на высокий момент вращения.

Отклонение частоты может повлиять на работу электроники. Так на экране телевизора возникают помехи при изменении показателя на ±0,1Гц. Кроме визуальных дефектов, возрастает риск вывода из строя микроэлементов. Методом борьбы с отклонениями качества электроэнергии выступает введение резервных питающих узлов, позволяющих в автоматическом режиме восстанавливать напряжение в установленные промежутки времени.

Коэффициенты

Для нормальной работы питающей сети введен контроль следующих коэффициентов:

Несинусоидальности кривой напряжения. Искажение синусоиды происходит за счет мощных потребителей: ТЭНов, конвекционных печей, сварочных аппаратов. При отклонениях этого параметра снижается срок службы обмоток двигателей, нарушается работа релейной автоматики, выходят из строя приводные системы на тиристорном управлении.
Временного перенапряжения является количественной оценкой импульсного изменения входной величины.
N-ой гармоники является характеристикой синусоидальности получаемой на входе характеристики напряжения

Расчетные значения получают из табличных данных для каждой гармоники.
Несимметрия входной величины по обратной или нулевой последовательности важно учитывать для исключения случаев неравномерного распределения фаз. Такие условия возникают чаще при обрыве питающей сети, подключенной по схеме звезды или треугольника.

Что происходит с потребителями при отклонении нормальных режимов питания?

Параметры качества электроэнергии влияют на длительность работы подключаемых устройств, часто это становится критично на производствах. Падает производительность линий, увеличивается расход энергии. Так на валу двигателей снижается вращающий момент при падении значений показателей питающей сети. Укорачивается срок службы ламп освещения, световой поток ламп становится меньше либо мерцает, что сказывается на выпускаемой продукции в теплицах. Существенное влияние оказывается на процессы других биохимических реакций.

Согласно законам физики снижение напряжения при неизменной нагрузке на валу двигателя приводит к стремительному росту тока. Это, в свою очередь, приводит к сбоям в работе защитных выключателей. В результате плавится изоляция, в лучшем случае горят плавкие предохранители, в худшем безвозвратно портятся обмотки двигателей, элементы электроники. При аналогичных обстоятельствах электросчетчик начинает вращаться с большей скоростью. Хозяин помещения терпит убытки.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: