Пьезоэлектрический эффект, применение в науке и технике

Особенности приборов, измеряющих вибрации

Чтобы увеличить чувствительность измерительного прибора, необходимо применить пьезоэлементы с высоким модулем. Этот материал укладывают параллельно в ряд и соединяют металлическими прокладками и пластинами. Для подобного эффекта еще могут применяться вещества, которые работают на изгиб. Однако они имеют низкую частоту и уступают механике сжатия.

Материал может быть биморфным, его обычно собирают последовательно или параллельно, все зависит от положительно расположенных осей. Как правило, это две пластины. Если учитывать нейтральный слой, то над ним вместо пьезоэлемента может использоваться накладка из металла со средней толщиной.

Чтобы измерить сигналы, которые двигаются достаточно медленно, необходимо сделать следующее:

  • пьезопреобразователь включают в автогенератор;
  • кристалл находится на резонансной частоте;
  • как только произойдет нагрузка, показатели изменятся.

Сегодня пьезоакселерометры – усовершенствованные приборы, которые могут быть высокочастотными, с сильной чувствительностью.

Суть пьезоэлектрического эффекта и его основные свойства

Первые сообщения о пьезоэлектрическом эффекте были опубликованы в 1880 году во Франции братьями Кюри. Они установили, что при механической деформации кварца и некоторых иных кристаллических материалов давлением, сжатием, растяжением и кручением на нем появляется электрический заряд. Авторы открытия назвали подобные заряды пьезоэлектричеством от греческого слова «давить». Соответственно, материалы, обладающие таким свойством, были отнесены ими к группе пьезоэлектриков.

Замечательное качество пьезоэлектрического эффекта – его обратимость, что иллюстрирует рисунок 1. Иначе говоря, любой пьезоэлектрический материал не только создает электрический заряд при давлении, но и начинает менять свой объем при нахождении в электрическом поле.

Рисунок 1. Прямой и обратный пьезоэлектрические эффекты

Пьезоэлектрические устройства широко распространены в современной технике. Этому способствуют:

  • дешевизна, распространенность и простота обработки пьезоэлектрических материалов;
  • неплохая стабильность их электрических и механических характеристик во времени.

Немаловажное значение приобретает тот факт, что величина как самого заряда, так и механических перемещений в ряде случаев достаточны для их непосредственного использования без привлечения дополнительных усилителей

Дополнительные пьезоэффекты

Кристалл может поляризоваться при воздействии на пластинку сил на осях X, Y. Если действует сила Fx, то проявляется продольный эффект, а когда Fy – поперечный, при Fzзарядов не возникает. Кварцевый кристалл располагается на трех осях координат. Чтобы использовать пьезоэлектрические измерительные преобразователи, необходимо вырезать пластинку, которая укажет на эффект. Она имеет следующее описание:

  • высокая прочность;
  • напряжение допускается до 108 Н/м2, благодаря этому возможны большие измеряемые силы;
  • жесткость и упругость;
  • минимальное трение внутри;
  • стабильность, которая не меняется;
  • максимальная добротность изготовленного материала.

Кварцевые пластинки применяются только в преобразователях, которые измеряют давление и силу. С учетом твердости материал сложно обработать, поэтому из него создают простую форму. Модуль постоянен при неизменяемой температуре. Если она увеличивается, то в этом случае происходит уменьшение модуля. Пьезоэлектрические свойства исчезают при температуре в 573 градуса по Цельсию.

Описание цепей измерения

Удельное и поверхностное сопротивления определяют собственное, причем основная составляющая для кварца выше, поэтому пьезоэлектрический преобразователь необходимо герметизировать. В результате повышаются качества, и поверхность защищается от влаги и грязи. Цепи измерения датчиков создавались как высокоомные усилители, в основе которых использовались выходной каскад на полевом транзисторе и неинвертирующий усилитель с операционным устройством. Напряжение поступает на вход и выход.

Однако в этом устаревшем пьезоэлектрическом преобразователе были недостатки:

  • зависимость напряжения выхода и чувствительность по отношению к объему датчика;
  • нестабильная емкость, которая меняется из-за температурных условий.

Напряжение усилителя и чувствительность определяются допустимой погрешностью, если дополнить включенный стабильный объем С1. Формула: ys = (ΔCo+ ΔCk)/(Co+Ck+C1). После преобразования получаем: S=Ubx/F. Если коэффициент увеличивается, соответственно, и эти переменные возрастают. Для измерительной цепи характерно:

  • постоянная линия времени;
  • сопротивление R определено входным усилением, изоляцией датчиков, кабелей, и R3;
  • МДП-транзисторы сильнее по сравнению с полевыми устройствами, однако имеют высокий уровень шума;
  • R3 стабилизирует напряжение, его значение высчитывается как ~ 1011 Ом.

Анализируя последнюю переменную, можно предположить, что постоянная линия времени следующая: t ≤ 1c. Сегодня устройства могут использовать с усилителями напряжения пьезоэлектрические датчики для заряда.

Альтернативный источник энергии посредством преобразователей

Одним из знаменитых и неисчерпаемых средств получения электричества является энергия волн. Такие станции монтируют непосредственно в водную среду. Это явление связано с солнечными лучами, которые нагревают массу воздуха, благодаря чему возникают волны. Вал данного явления имеет энергоемкость, которая определяется по силе ветра, ширине воздушных фронтов, продолжительности порывов.

Значение может колебаться на мелководье или достигать 100 кВт на один метр. Пьезоэлектрический преобразователь энергии волн работает по определенному принципу. Уровень воды поднимается посредством волны, в процессе воздух выдавливается из сосуда. Затем потоки пропускаются реверсирующейся турбиной. Агрегат вращается по определенному направлению, вне зависимости от движения волн.

Этот аппарат имеет положительную характеристику. До сегодняшнего дня совершенствование конструкции не прогнозируется, потому что эффективность и принцип работы доказаны всеми существующими путями. В процессе технического прогресса, возможно, будут построены плавучие станции.

Пьезоэлектрический эффект

Пьезоэлектрические вещества (пьезоэлектрики), в частности пьезокерамика, имеет то свойство, что при деформации под действием внешнего механического давления на их поверхности возникают электрические заряды. Этот эффект называется прямым пьезоэлектрическим эффектом и был открыт в 1880 г. братьями Кюри.

Справка: Первая статья Жака и Пьера Кюри о пьезоэлектричестве была представлена Минералогическому обществу Франции (Societe mineralogique de France) на сессии 8 Апреля 1880 года и позже Академии наук (Academie des Sciences) на сессии 24 августа 1880 года. Пьер и Жак Кюри впервые открыли прямой пьезоэлектрический эффект у кристалла турмалина. Они заметили, что если оказывать механическое давление на кристалл в определенном направлении, на противоположных сторонах кристалла возникают электрические заряды пропорциональные давлению и противоположной полярности. Позже они открыли подобный эффект у кварца и других кристаллов. В 1880 году Пьеру Кюри был только 21 год .

Вскоре после этого (в 1881 г.) был подтвержден и обратный пьезоэффект, а именно что такое вещество, расположенное между двумя электродами, реагирует на приложенное к нему электрическое напряжение изменением своей формы. Первый эффект в настоящее время используется для измерений, а второй – для возбуждения механических давлений, деформаций и колебаний.

Более детальные исследования пьезоэффекта показали, что он объясняется свойством элементарной ячейки структуры материала. При этом элементарная ячейка является наименьшей симметричной единицей материала, из которой путем ее многократного повторения можно получить микроскопический кристалл. Было показано, что необходимой предпосылкой для появления пьезоэффекта является отсутствие центра симметрии в элементарной ячейки.


Рисунок 1 – Элементарная ячейка цирконата титоната свинца (ЦТС) при температуре выше точки Кюри (слева) и при температуре ниже точки Кюри (справа)

Здесь можно кратко пояснить пьезоэлектрический эффект на примере титаната бария, часто применяемой пьезоэлектрической керамики со сравнительно простой конструкцией элементарной ячейки. Титанат бария ВаТiO3, как и многие другие пьезокерамические вещества, аналогичен по структуре перовскиту (СаТiО3), по которому и назван этот класс материалов. Элементарная ячейка при температурах выше, критической, которая называется также , является кубической. Если температура ниже этой критической, то элементарная ячейка тетрагонально искажается по направлению к одной из кромок. В результате изменяются и расстояния между положительно и отрицательно заряженными ионами (, для ВаТiO3 вместо Pb — Ba). Смещение ионов из их первоначального положения очень мало: оно составляет несколько процентов параметра элементарной ячейки. Однако такое смещение приводит к разделению центров тяжести зарядов внутри ячейки, так что образуется электрический дипольный момент. По энергетическим условиям диполи соседних элементарных ячеек кристалла упорядочиваются по областям в одинаковом направлении, образуя так называемые домены.

READ  Плк110 программируемый логический контроллер

Рисунок 2 – Неупорядоченная поляризация (слева) и упорядоченная поляризация доменов при наложениии сильного электрического поля (справа)

Направления поляризации доменов распределяются в поликристаллической структуре по статическому закону. Таким образом, неупорядоченные скопления отдельных микрокристаллов в структуре вещества, образующиеся только в спеченной керамики, в макроскопическом смысле вообще не могут давать никакого пьезоэлектрического эффекта. Только после так называемого процесса поляризации, в котором при наложении сильного электрического поля на керамику происходит выравнивание возможно большего числа доменов параллельно друг другу, удается использовать пьезоэлектрические свойства элементарных ячеек. Поляризация обычно проводится при температуре немного ниже температуры Кюри, чтобы облегчить ориентацию доменов. После охлаждения это упорядоченное состояние остается стабильным.

Современные средства проектирования позволяют рассчитать / промоделировать отдельно пьезоэлемент или пьезоэлектрический преобразователь целиком. По согласованию с Инженерными решениями Вы можете заказать пьезоэлектрического преобразователя

Механическое сжатие или растяжение, действующее на пьезоэлектрическую пластину параллельно направлению поляризации, приводит к деформации всех элементарных ячеек. При этом центры тяжести зарядов взаимно смещаются внутри элементарных ячеек, которые расположены теперь преимущественно параллельно, и в результате получается заряд на поверхности .

Описание устройства и цепей измерения

Пьезоэлектрический преобразователь давления имеет следующую структуру:

  • мембрана, которая является дном корпуса;
  • обкладка снаружи заземлена, а средняя изолируется кварцем;
  • пластины имеют высокое сопротивление, соединены параллельно;
  • фольгу и внутреннюю жилу кабеля скрепляют в отверстии, закрывающемся крышкой.

Мощность на выходе – минимальна, в связи с этим предусматривают усилитель с большим сопротивлением. По сути, напряжение зависит от емкости цепи входа. Характеристики преобразователя указывают на чувствительность и емкость. В основном это заряд и собственные показатели устройства. Если рассчитать суммарно, то получится следующая выходная мощность: Sq= q/F или Uxx = d11·F/Co.

Чтобы расширить диапазон частоты, необходимо измеряемые низкие переменные увеличить в сторону постоянной цепи времени. Подобное действие легко осуществить с помощью включения конденсаторов, которые расположены параллельно с устройством. Правда при этом напряжение выхода снизится. Сопротивление, которое было увеличено, расширит диапазон без утрат чувствительности. Но для его повышения необходимы улучшенные изоляционные качества и усилители с высокоомным входом.

Пьезоэлектрические свойства горных пород[править | править код]

Некоторые минералы горных пород обладают пьезоэлектрическим свойством за счёт того, что электрические оси этих минералов расположены не хаотично, а ориентированы преимущественно в одном направлении, поэтому одноимённые концы электрических осей («плюсы» или «минусы») группируются вместе. Это научное открытие было сделано в Институте физики Земли советскими учёными М. П. Воларовичем и Э. И. Пархоменко и занесено в Государственный реестр открытий СССР под № 57 с приоритетом от 1954 г. На основе этого открытия разработан пьезоэлектрический метод геологической разведки кварцевых, пегматитовых и хрусталеносных жил, которым сопутствуют золото, вольфрам, олово, флюорит и другие полезные ископаемые.

Преимущественные характеристики устройств

Пьезоэлектрический преобразователь имеет следующие достоинства:

  • простота конструкционной сборки;
  • габариты;
  • надежность;
  • преобразование напряжения механики в электрический заряд;
  • переменные величины, которые можно быстро измерить.

В случае с материалом вроде кварца, который близок к идеальному состоянию тела, преобразование механики в заряд электрики возможно с минимальной погрешностью от -4 до -6. Однако развитие высокоточной техники улучшило способность реализовать точность без потерь. В результате можно прийти к выводу, что для измерителей сил, давления и прочих элементов наиболее подходящими являются эти пьезоэлектрические преобразователи.

ПЭП ускорения имеет следующую конструкцию:

  • все материалы крепятся к титановому основанию;
  • два одновременно включенных пьезоэлемента из кварца;
  • высокоплотная инерционная масса предназначена для минимальных габаритов;
  • снятие сигнала посредством латунной фольги;
  • она, в свою очередь, соединена с кабелем, который припаивается;
  • датчик закрыт крышкой, навинченной в основании;
  • чтобы укрепить измеритель на объекте, нарезают резьбу.

Невзирая на массу, датчик достаточно стабилен и плотен. Работает в диапазоне 150 м/с2.

Производство пьезоэлементов

Большинство составов пьезокерамики основано на химических соединениях с формулой АВО3 (напр., BaTiO3, РbТiO3) с кристаллической структурой типа перовскита и различных твёрдых растворов на их основе (например, системы BaTiO3 — CaTiO3, BaTiO3 — CaTiO3 — CoCO3, NaNbO3 — KNbO3). Особенно широко используются в качестве пьезоэлектрических материалов составы системы РbТiO3 — PbZrO3 (т. н. система PZT, или ЦТС). Практический интерес представляет также ряд соединений с формулой АВ2О6, напр. PbNb2O6, имеющих весьма высокую Кюри точку (~570 °С), что позволяет создавать пьезоэлементы для работы при высоких температурах.

Рисунок 7 – Порошок для изготовления пьезоэлемента

Процесс изготовления пьезокерамики разделяется на несколько этапов. При осуществлении синтеза заданного сегнетоэлектрического соединения исходное сырье (окислы или соли, например, двуокись титана и окись бария) измельчается и смешивается в количествах, соответствующих стехиометрическому составу соединения, а затем подвергается термической обработке при температурах 900 – 1300 °С, в процессе которой происходит химический синтез. Используется также так называемый метод осаждения из водных растворов, при котором температура синтеза благодаря идеальному перемешиванию компонентов снижается до 750 – 1000 °С. Из порошкообразного синтезированного материала прессованием (а также литьём под давлением) получаются заготовки необходимой конфигурации и размеров для будущих пьезоэлементов, которые затем подвергаются обжигу по строго определенному температурному режиму, в большой степени определяющему свойства пьезокерамики. Механическая обработка детали после обжига обеспечивает ей точно заданную форму и размеры. На деталь наносятся электроды из серебра, никеля, платины и др., причем наибольшее распространение получил метод вжигания серебра. Для поляризации керамики к электродам подводится электрическое напряжение (напряжённость поля Е составляет от 0,5 до 3 кВ/мм в зависимости от химического состава и метода поляризации). С целью уменьшения напряженности поля Е при поляризации образец нагревают до температур, близких к точке Кюри (т. к. при этом домены обладают большей подвижностью), а затем медленно охлаждают в присутствии поля. Пьезокерамике свойственно т. н. старение, т. е. изменение её параметров (диэлектрической проницаемости, пьезомодулей) со временем, особенно заметное в первые несколько суток после изготовления и поляризации образцов, которое обусловлено изменением как механических напряжений на границах между зёрнами, так и величины остаточной поляризации .

READ  Как работают релейная защита и автоматика

Физические свойства пьезоэлемента

Пьезоэлектрические материалы по своей сути довольно простые и характеризуются всего лишь двумя физическими величинами – диэлектрической проницаемостью и пьезоэлектрическим модулем. От первой величины зависит емкость пьезоэлемента, а от пьезоэлектрического модуля – электрический заряд, образующийся на электродах, после того как к ним была приложена какая-то сила.

В пьезокерамике для описания процесса применяется три модуля в зависимости от расположения силы, действующей по отношению к полярности оси пьезоэлемента.

3333

Прямой пьезоэффект модуля измеряется в единицах кулон/ньютон (К/Н). Именно эта величина характеризует материал, из которого он изготовлен. Независимо от приложенной силы и размеров самого элемента, при воздействии силы в 1 ньютон, на электродах будет образовываться один и тот же заряд.

Для определения напряжения на электродах существует формула: U = q/C, в которой в свою очередь q = F d33. Из данной формулы видно, что в отличие от заряда, напряжение будет зависеть от размеров пьезоэлемента, поскольку емкость С связана с площадью электродов и расстоянием между ними. Если в качестве примера взять емкость обычной зажигалки, равной 40 пикофарадам (пф), то приложенная сила в 1 Н даст напряжение 6 В. Соответственно, если сила увеличится до 1000 Н (100 кг), то полученное напряжение составит уже 6 кВ.

Использование пьезоэффекта в технике

Прямой пьезоэффект используется:

  • в пьезогенераторах электроэнергии разнообразного назначения:
    • в пьезозажигалках, для получения высокого напряжения на разряднике от движения пальца;
    • в контактном пьезоэлектрическом взрывателе (например, к выстрелам РПГ-7);
  • в датчиках:
    • в качестве чувствительного к силе элемента (чем больше сила, тем выше напряжение на контактах), например, в силоизмерительных датчиках, датчиках давления жидкостей и газов;
    • в качестве чувствительного элемента в микрофонах, гидрофонах, головках звукоснимателя электрофонов, приёмных элементов сонаров;

Обратный пьезоэлектрический эффект используется:

  • в акустических излучателях:
    • в пьезокерамических излучателях звука (эффективны на высоких частотах и имеют небольшие габариты; такие например встраиваются в музыкальные открытки, различные оповещатели, применяемые во всевозможных бытовых устройствах от наручных часов до );
    • в ультразвуковых излучателях для увлажнителей воздуха, ультразвуковой гидроочистки (в частности, ультразвуковых стиральных машин и промышленных ультразвуковых ванн);
    • в излучателях гидролокаторов (сонарах);
  • в системах механических перемещений (активаторах):
    • в системах сверхточного позиционирования, например, в системе позиционирования иглы в сканирующем туннельном микроскопе или в позиционере перемещения головки жёсткого диска;
    • в адаптивной оптике, для изгиба отражающей поверхности деформируемого зеркала.
  • в пьезоэлектрических двигателях;
  • для подачи чернил в струйных принтерах.

Прямой и обратный эффект одновременно используются:

  • в кварцевых резонаторах, используемых как эталон частоты;
  • в пьезотрансформаторах для изменения напряжения высокой частоты.
  • в приборах на эффекте поверхностных акустических волн:
    • в ультразвуковых линиях задержки электронной аппаратуры;
    • в датчиках на поверхностных акустических волнах.

Пьезоэлектрические устройства

Гидролокатор

Гидролокатор был изобретен в 1900-х годах Льюисом Никсоном. Первоначально он использовался для обнаружения айсбергов. Однако интерес к нему очень сильно возрос в период Первой мировой войны, где он использовался для обнаружения подводных лодок. В наше время гидролокатор является распространенным прибором с большим количеством различного рода применений.

На рисунке ниже показан принцип работы гидролокатора:

А принцип работы довольно прост – передатчик, который использует обратный пьезоэлектрический эффект, посылает звуковые волны в определенном направлении. При попадании волны на объект она отражается и возвращается обратно, где ее обнаруживает приемник.

Приемник, в отличии от передатчика, использует прямой пьезоэлектрический эффект. Он преобразует возвращаемую отраженную звуковую волну в электрический сигнал и передает его в электронную систему, которая и будет производит дальнейшую обработку сигнала. Расстояние от источника сигнала до определяемого объекта вычисляется на основании временных характеристик сигналов передатчик – приемник.

Пьезоэлектрические исполнительные устройства

Ниже показана работа силового привода на  основе пьезоэлектрического эффекта:

Работа привода довольно проста – под воздействием приложенного к материалу напряжения происходит его расширение или сужение, которое и приводит привод в движение.

Например, некоторые вязальные машины используют этот эффект для своей работы благодаря его простоте и минимальному количеству вращающихся частей. Такие приводы применяются даже в некоторых видеокамерах и мобильных телефонах в качестве приводов фокусировки.

Пьезоэлектрические громкоговорители и зуммеры

Такие устройства используют обратный пьезоэлектрический эффект для создания и воспроизведения звука. При подаче напряжения к динамикам и зуммерам он начинает вибрировать и таким образом генерирует звуковые волны.

Пьезоэлектрические динамики обычно используют в будильниках или других несложных акустических системах для создания простой аудиосистемы. Эти ограничение вызваны частотой среза данных систем.

Пьезо драйверы

Пьезо драйверы могут преобразовывать низкое напряжение батареи в высокое для питания силовых пьезоэлектрических устройств. Пьезо драйверы помогают инженерам создавать большие значения синусоидального напряжения.

Ниже представлена блок схема, показывающая принцип работы пьезо драйвера:

Пьезо драйвер будет получать низкое напряжение от батареи и повышать его с помощью усилителя. Осциллятор будет подавать на вход драйвера синусоидальное напряжение малой амплитуды, которое в последующем будет повышено пьезо драйвером и отправлено на пьезо устройство.

Области применения пьезоэлектрического преобразователя

Устройства с прямым эффектом используются в приборах, которые измеряют силу, давление, ускорение. У них высокий уровень частоты и жесткости. Аппараты с обратной связью применяют в ультразвуковых колебаниях, преобразовании напряжения в деформацию, уравновешивания. Если одновременно учитывают оба эффекта, то этот вариант подходит для пьезорезонаторов, которые преобразуют один вид энергии в другой достаточно быстро.

Положительные устройства, включенные в обратное направление, работают на автоматических колебаниях и применяются в генераторах. Область их применения обширна, так как они имеют высокую стабильность при правильном создании. Зачастую для достижения нужного эффекта и получения верных сведений используют несколько пьезорезонаторов.

Прямой и обратный пьезоэффект

Для прямого эффекта характерно следующее: используемый кристаллический материал образует решетку за счет заряженных ионов, расположенных в определенном порядке. В процессе разноименные частицы чередуются и производят взаимную компенсацию, в результате получается электрическая нейтральность. Кристаллы имеют особенности, которые обозначены следующим образом:

  • симметрия по отношению к оси;
  • с учетом предыдущего вида проявляется решетка с ионами, которые чередуются и компенсируются.

Если используемый материал в процессе направлен на силу Fx, то он деформируется, расстояние между положительными и отрицательными зарядами меняется, и происходит электризация направления в заданной оси. Все это выражается в формуле q = d11Fx и является пропорциональным для силы. Коэффициент связан с веществом и его состоянием, имеет название – пьезоэлектрический модуль. Индексы определены силой и гранью, но если изменить направление, то эффект станет иным.

Пьезоэлектрический преобразователь при прямом процессе электризует кристаллы под воздействием внешних сил. Этот эффект возникает при влиянии веществ, являющихся электриками. Чтобы изготовить измерительные приборы, понадобятся кристаллы кварца. То есть принцип действия пьезоэлектрического преобразователя следующий: при прямом эффекте воздействие осуществляется через механику, а при обратном происходит деформация кристаллов.

READ  Инструмент для снятия изоляции

Принцип работы

Действие пьезоэлемента наиболее четко просматривается на примере зажигалки нажимного действия. При нажатии на клавишу, зажигалка выдает целую серию искр, что свидетельствует о наиболее удачном использовании пьезогенератора в данной конструкции. Чтобы представить себе принцип работы, рекомендуется рассмотреть схему упрощенной модели этого устройства. Она выполнена в виде опоры с рычагом, создающим большое усилие, воздействующее на пьезоэлемент.

Сами элементы представляют собой сплошные цилиндрические конструкции, на торцах которых расположены электроды. Они соприкасаются друг с другом, поэтому на них воздействует одинаковая сила. Ориентация каждого пьезоэлемента между собой выполнена таким образом, чтобы электроды соприкасающихся поверхностей имели один заряд, например, положительный, а противоположные концы – заряд с другим знаком. Порядок подключения необходимо обязательно соблюдать, особенно при изготовлении подобного устройства своими руками.

Под действием рычага электроды замыкаются, и возникает электрическое параллельное соединение каждого пьезоэлемента между собой. От точки соприкосновения выводится токовод с закругленным наконечником, расположенным от металлической основы на определенном расстоянии. Во время нажатия на рычаг воздушный промежуток между основой и наконечником пробивается электрической искрой. Теперь уже понятно, как работает такая зажигалка. При дальнейшем нажатии усилие возрастает, что приводит к появлению второй и последующей искр. Это будет происходить до тех пор, пока пьезоэлементы не разрушатся полностью.

Некоторые области применения

Приведем только некоторые примеры пьезоэлектрической техники массового применения.

Ручная пьезозажигалка поступила в массовую продажу еще в 70-е гг. прошлого столетия. Электричество, появляющееся на кристалле при нажатии на клавишу, поступает на электроды, между которыми при разряде проскакивает искра и поджигает газ. В настоящее время встроенными элементами, рисунок 2 комплектуются газовые плиты средних и старших моделей.

Рисунок 2. Встраиваемый пьезоэлемент газовой плиты

Пьезофильтр популярен в электронике за счет того, что как механическая система пьезокристалл обладает очень высокой колебательной добротностью. В результате с его помощью можно существенно снизить ширину полосы расфильтровки и эффективно отделять сигналы друг от друга.

Гидролокатор использует кристалл как излучатель зондирующих акустических волн и приемник сигналов, отраженных от любого подводного препятствия (дно, рыба, дерево-топляк, подводная лодка и т.д.), рисунок 3.

Рисунок 3. Рабочий элемент рыболовного гидролокатора

Микроподвижки элементов фокусировки телекамер, электронно-механических коммутаторов оптических сигналов и иных элементов. Выгодны тем, создают линейное движение непосредственно без промежуточного преобразования из вращательного.

Зуммеры мобильных телефонов, которые сигнализируют вибрацией о вызове в беззвучном режиме.

Пьезоголовки струйных принтеров для управления процессами нанесения чернил на бумагу.

Применение

Любой пьезоэлемент можно использовать в современных технических устройствах разного назначения. Они применяются в качестве кварцевых резонаторов, миниатюрных трансформаторов, пьезоэлектрических детонаторах, генераторах частоты с высокой стабильностью и во многих других местах. Каждый прибор устроен таким образом, что в нем может использоваться не только кристаллический кварц, но и элементы из поляризованной пьезокерамики.

Однако пьезоэлемент не ограничивается одними лишь зажигалками. В настоящее время ведутся работы по решению задачи, как сделать использование этих материалов более продуктивным. Данный принцип достаточно давно применяется на танцевальных площадках и стоянках автомобилей, где под давлением происходит превращение механической энергии в электрическую.

В перспективе возможно устройство более мощных энергодобывающих систем. В настоящее время разрабатываются генераторы, обладающие небольшими размерами, основой которых служит нитрид алюминия, успешно заменивший традиционный цирконат-титанат свинца. Данное устройство по своей сути является беспроводным температурным датчиком, способным накапливать энергию от различных вибраций и передавать полученные данные через установленные промежутки времени.

В настоящее время преобразователи на базе пьезоэлементов устанавливаются на реактивные самолеты. Данное техническое решение дает возможность экономии до 30% топливных ресурсов, используя колебания крыльев и самого фюзеляжа. Созданы экспериментальные светофоры, работающие от аккумуляторов, заряжающихся от колебаний воздуха, вызванных городским шумом.

В будущем эти разработки позволят ликвидировать дефицит мощностей. С помощью пьезоэлементов станет возможно получать электричество в результате движения автомобилей по специально оборудованным трассам. Даже десять километров такой пьезодороги выдадут около 5 МВт/час. Тротуары для пешеходов также внесут свой вклад в добычу электроэнергии

Данное направление очень интересное и перспективное, привлекающее внимание ученых многих стран

Что такое пьезоэлектрический эффект

Фоторезистор: основные параметры

Клетка Фарадея

Для чего нужно УЗО

Гальваническая развязка

Тяговый электродвигатель: назначение и применение

Применение пьезокерамики

Пьезоэлектрические материалы нашли применение в широком ряде областей, таких как медицинские инструменты, контроль промышленных процессов, системах производства полупроводников, бытовых электрических приборах, системах контроля связи, различных измерительных приборах и в других областях. Коммерческие системы, которые используют пьезоэлектрические материалы – помпы, швейные машины, датчики (давления, обледенения, угловых скоростей и т.д.), оптические инструменты, лазерные принтеры, моторы для автофокусировки камер и многие другие. При этом область применения данных материалов постоянно растет. Применение пьезоэлемента обычно сводится к четырем категориям: сенсоры, генераторы, силовые приводы, и преобразователи.

В генераторах, пьезоэлектрические материалы могут генерировать напряжение, которого достаточно для возникновения искры между электродами, и таким образом могут быть использованы как электроды для воспламенения топлива, для газовых плит и для сварочного оборудования. Альтернативно, электрическая энергия, генерируемая пьезоэлектрическими элементами, может накапливаться. Такие генераторы являются превосходными твердыми аккумуляторными батареями для электронных схем.

В сенсорах, пьезоэлектрические материалы преобразуют физические параметры, такие как ускорение, давление и вибрации в электрический сигнал.

В силовых приводах, пьезоэлектрические материалы преобразуют электрический сигнал в точно контролируемое физическое смещение, четко устанавливая точность механических инструментов, линз и зеркал.

В преобразователях, пьезоэлектрические преобразователи могут, как генерировать ультразвуковой сигнал из электрической энергии, так и конвертировать приходящие механические колебания в электрические. Пьезоэлектрические приборы проектируются для измерения расстояний, скорости потока, и уровня жидкости. Преобразователи так же используются, чтобы генерировать ультразвуковые вибрации для очистки, сверления, сварки, размельчения керамики и для медицинской диагностики .

Ультразвук
Преобразователи
Проектирование

Ranier Clement Tjiptoprodjo. On a Finite Element Approach to Modeling of Piezoelectric Element Driven Compliant Mechanisms.- Saskatchewan, Canada.: University of Saskatchewan Saskatoon, April 2005
Й.Крауткремер, Г.Крауткремер. Справочник. Ультразвуковой контроль материалов.-Москва.: Металлургия, 1991.
David H. Johnson. Simulation of an ultrasonic piezoelectric transducer for NASA/JPL Mars rover.- PA, USA.: Cybersonic, Inc. of Erie, 2003.
www.piezo.com
ОСТ 11 0444-87 «Материалы пьезокерамические»
Tokin. Multilayer Piezoelectic Actuators. User’s Manual, Tokin Corporate Publisher.: 1996.
Д.В.Сивухин. Общий курс физики. Т.I. Механика.- Москва.:1979.
Голямина И.П. Ультразвук.-Москва.: из-во «Советская энциклопедия», 1979
Jan Tichy, Jiry Erhart, Erwin Kittinger, Jana Privratska. Fundamentals of Piezoelectric Sensorics.- Heidelberg, Dordrecht, London, New York.: Springer, 2010

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: