Измерительный мост

Схема мостового измерителя

Принципиальная схема реального мостового измерителя емкости и индуктивности, который вам предлагается сегодня сделать, показана на рисунке 4. Вы, наверное уже догадались, что этот прибор будет работать от низкочастотного генератора и лабораторного источника сигнала, которые мы с вами уже сделали ранее.

При помощи моста можно измерять емкости от десятков пФ до единиц мкФ и индуктивности от десятков мкГн до единиц мГн.

В качестве индикатора баланса используются обычные головные телефоны, например, от аудиоплейера, которые подключаются в гнездо Х5

Обратите внимание -общий вывод гнезда никуда не припаян, а к схеме подключены выводы стереоканалов наушников. Это позволяет увеличить сопротивление телефонов потому, что обе звуковые катушки так будут включены последовательно

На разъем Х2 подаются прямоугольные импульсы с выхода нашего генератора, при этом S4 генератора должен быть в противоположном, показанному на схеме положении (см. «РК-12-2004, стр.36-38).

Рис. 4. Принципиальная схема мостового измерителя емкости и индуктивности.

Транзисторный ключ на VT1 (рис.4) защищает выход микросхемы генератора от перегрузки, которая может возникнуть в процессе работы с мостом. Переключателями S1-S5 выбирают пределы измерения и то, что нужно измерять (индуктивность или емкость). При измерении индуктивности измеряемые катушки нужно подключать к клеммам Х3, а измеряя емкость — измеряемые конденсаторы подключать к Х4.

Если вернуться к схемам, приведенным на рисунках ЗА и ЗБ, то, конденсаторы С1, С2 и С3 (рис. 4) это конденсатор С1 (рис.З А), а измеряемый конденсатор — это С2 (рис.ЗА). Индуктивности L1 и L2 показанные на схеме на рисунке 4, — это индуктивность L2 в схеме на рисунке ЗБ, а измеряемая индуктивность — это L1 на рисунке З Б.

Органом измерения и, одновременно, индикатором результата измерения служит переменный резистор R1. Его рукоятка имеет стрелку, а вокруг нее нанесена на корпусе прибора шкапа (таким же способом как шкала настройки генератора НЧ).

На разъем Х1 подается напряжение от лабораторного источника питания. При измерении емкостей величина этого напряжения должна быть установлена 10-12V, а при измерении индуктивностей — 4-5V. Индуктивность и емкость можно отсчитывать по одной и той же шкале

Это важно, поскольку для градуировки измерителя емкости можно приобрети достаточное количество конденсаторов разных емкостей, а с приобретением такого же количества разных катушек могут возникнуть проблемы. Поэтому, градуировав прибор на измерение емкости можно им пользоваться и для измерения индуктивности

READ  Падение напряжения в проводах - откуда оно берётся и как его посчитать

На генераторе установите частоту около 1000 Гц. С такой частотой в дальнейшем и будет работать мост. Конденсаторы С1, С2 и С3 нужно выбрать с наименьшей погрешностью емкости. Если есть такая возможность лучше их емкости предварительно проверить при помощи какого-то точного прибора, измеряющего емкости. В качестве L2 и L1 лучше использовать готовые дроссели (на 100 мкГн и на 1 мГн).

Прибор можно собрать в любом подходящем по размерам корпусе, например, в пластмассовой мыльнице. В качестве переключателей S1-S4 можно использовать такие же как в генераторе НЧ, но не три, а пять модулей или простые тумблеры. Можно всех их заменить одним поворотным переключателем на пять положений.

Работая с прибором нужно помнить, что только один из S1-S5 может быть замкнутым, при этом все остальные разомкнуты.Шкала одна и та же для всех пределов и видов измерения. Поэтому, её можно отградуировать на одном пределе, например, «х0,01 мкФ». В этом случае, подготовьте эталонные конденсаторы, например, на 1000 пф, 1500 пф, 3000 пФ, 5000 пф, 7500 пФ, 0,01 мкФ, 0,015 мкФ, 0,02 мкФ, 0,05 мкФ, 0,1 мкФ.

Проводя контрольные измерения этих эталонных конденсаторов, при замкнутом S2, делайте на шкале метки : 1000 пФ -«0,1″, 1500пФ — ”0,15″, 3000 пФ — ”0,3», 5000 пФ — «0,5», 7500 пФ — «0,75», 0,01 мкФ — «1», 0,015 мкФ — «1,5», 0,02 мкФ — «2», 0,05 мкФ -«5», 0,1 мкФ — «10».

Метку нужно делать в том месте шкалы, при повороте рукоятки переменного резистора в которое, при подключенном эталонном конденсаторе, звук в наушниках пропадает.

Рк2005, 1.

Измерение сопротивлений с помощью моста Уитстона

Принцип измерения сопротивления основан на уравнивании потенциала средних выводов двух ветвей (см. ).

  1. В одну из ветвей включён двухполюсник (резистор), сопротивление которого требуется измерить (Rx{\displaystyle R_{x}}).

Другая ветвь содержит элемент, сопротивление которого может регулироваться (R2{\displaystyle R_{2}}; например, реостат).

Между ветвями (точками B и D; см. ) находится индикатор. В качестве индикатора могут применяться:

  • гальванометр;
  •  — прибор, отклонение стрелки которого показывает наличие тока в цепи и его направление, но не величину. На шкале такого прибора отмечено только одно число — ноль;
  • вольтметр (RG{\displaystyle R_{G}} принимают равным бесконечности: RG=∞{\displaystyle R_{G}=\infty });
  • амперметр (RG{\displaystyle R_{G}} принимают равным нулю: RG={\displaystyle R_{G}=0}).
READ  Гост 30849.1-2002 (мэк 60309-1:1999) вилки, штепсельные розетки и соединительные устройства промышленного назначения. часть 1. общие требования

Обычно в качестве индикатора используется гальванометр.

  1. Сопротивление R2{\displaystyle R_{2}} второй ветви изменяют до тех пор, пока показания гальванометра не станут равны нулю, то есть потенциалы точек узлов D и B не станут равны. По отклонению стрелки гальванометра в ту или иную сторону можно судить о направлении протекания тока на диагонали моста BD (см. ) и указывают в какую сторону изменять регулируемое сопротивление R2{\displaystyle R_{2}} для достижения «баланса моста».

Когда гальванометр показывает ноль, говорят, что наступило «равновесие моста» или «мост сбалансирован». При этом:

отношение R2/R1{\displaystyle R_{2}/R_{1}} равно отношению Rx/R3{\displaystyle R_{x}/R_{3}}:

R2R1=RxR3,{\displaystyle {\frac {R_{2}}{R_{1}}}={\frac {R_{x}}{R_{3}}},}

откуда

Rx=R2R3R1;{\displaystyle R_{x}={\frac {R_{2}R_{3}}{R_{1}}};}
  • разность потенциалов между точками B и D (см. ) равна нулю;
  • ток по участку BD (через гальванометр) (см. ) не протекает (равен нулю).

Сопротивления R1{\displaystyle R_{1}}, R3{\displaystyle R_{3}} должны быть известны заранее.

  1. Изменяют сопротивление R2{\displaystyle R_{2}} до баланса моста.
  1. Вычисляют искомое сопротивление Rx{\displaystyle R_{x}}:
Rx=R2R3R1.{\displaystyle R_{x}={\frac {R_{2}R_{3}}{R_{1}}}.}

Вывод формулы см. ниже.

Точность

При плавном изменении сопротивления R2{\displaystyle R_{2}} гальванометр способен зафиксировать момент наступления равновесия с большой точностью. Если величины R1{\displaystyle R_{1}}, R2{\displaystyle R_{2}} и R3{\displaystyle R_{3}} были измерены с малой погрешностью, величина Rx{\displaystyle R_{x}} будет вычислена с большой точностью.

В процессе измерения сопротивление Rx{\displaystyle R_{x}} не должно изменяться, так как даже небольшие его изменения приведут к нарушению баланса моста.

Недостатки

К недостаткам предложенного способа можно отнести:

необходимость регулирования сопротивления R2{\displaystyle R_{2}}. На поиски «равновесия» тратится время. Гораздо быстрее измерить несколько параметров цепи и вычислить Rx{\displaystyle R_{x}} по другой формуле.

Модификации

Используя мост Уитстона, можно с большой точностью измерять сопротивление.

Различные модификации моста Уитстона позволяют измерять другие физические величины:

  • ёмкость;
  • индуктивность;
  • импеданс;
  • концентрацию газов;
  • и другое.

Прибор explosimeter (англ.) позволяет определить, превышена ли допустимая концентрация горючих газов в воздухе.

Мост Кельвина (англ. Kelvin bridge), также известный как мост Томсона (англ. Thomson bridge), позволяет измерять малые сопротивления, изобретён Томсоном.

Вид спереди прибора, построенного на основе моста Кельвина

Прибор Максвелла позволяет измерять силу переменного тока, изобретён Максвеллом в 1865 году, усовершенствован Блюмлейном около 1926 года.

READ  Где в москве принимают опасные бытовые отходы

Мост Максвелла (англ. Maxwell bridge) позволяет измерять индуктивность.

Мост Фостера (англ. Carey Foster bridge) позволяет измерять малые сопротивления, описан Фостером (англ. Carey Foster) в документе, опубликованном в 1872 году.

Делитель напряжения Кельвина-Варли (англ. Kelvin–Varley divider) построен на основе моста Уитстона.

Что такое измерительный мост

А теперь разберемся, — что же такое измерительный мост? Начнем с моста постоянного тока (такими можно измерять сопротивления) — рис. 1. Есть четыре резистора включенных очень похоже на то, как включены диоды в мостовом выпрямителе. На одну диагональ моста подается постоянное напряжение а в другую включен стрелочный вольтметр Р1 с нулем в центре шкалы.

Предположим, что R1=R2 (рисунок 1 А), тогда напряжение в точке соединения этих резисторов будет равно половине напряжения U. Если, при этом, R3=R4, то в точке соединения R3 и R4 будет такое же напряжение (0,5U) как и в точке соединения R1 и R2. То есть, разности потенциалов между этими двумя точками нет, и наш вольтметр показывает ноль. Такое состояние называется балансом моста.

Рис. 1. Измерительные мосты с сопротивлениями.

Теперь предположим, что сопртивление R3 взяло и уменьшилось (рисунок 1 Б) и, следовательно, стало меньше сопротивления R4. В этом случае, напряжение в точке соединения R3 и R4 возрастет и станет больше чем напряжение в точке соединения, по прежнему одинаковых, резисторов R1 и R2. А раз так, то стрелка вольтметра отклонится в сторону положительных напряжений.

Такое состояние называется разбалансировкой моста. Теперь, чтобы этот мост сбалансировать нужно изменить сопротивление одного из резисторов, так, чтобы напряжения в точках соединений R1-R2 и R3-R4 снова стили одинаковыми. Это можно сделать уменьшив сопротивление или уменьшив сопротивление R4 или увеличив сопротивление R2.

На рисунке 1В показан случай, когда R3 не уменьшилось, а увеличилось, что, само собой, привело к уменьшению напряжения в точке соединения R3-R4 по сравнению с напряжением в точке соединения R1-R2 (R1=R2). Стрелка вольтметра, при этом, отклонится в сторону отрицательных напряжений. А выправить балансировку моста можно будет, например, увеличив R4 или R1 или уменьшив сопротивление R2.

Напрашивается вывод, — условием баланса моста является выполнение соотношения : R1/R2 = R3/R4.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: