Источники света. распространение света

Возникновение света

Излучение фотона света при переходе атома с зарядом ядра +Ze с третьего энергетического уровня во второй. —- До 1923 года большинство физиков отказывались верить в то, что электромагнитное излучение обладает квантовыми свойствами. Вместо этого они склонны были объяснять поведение фотонов квантованием материи, как, например, в модели атома водорода, предложенной Бором. Хотя все полуклассические модели были опровергнуты экспериментами, они привели к созданию квантовой механики.

Хорошо известно, что при нагревании до определённых температур вещества начинают излучать свет: будь то вольфрамовый волосок в электрической лампочке или наше небесное светило, температура на поверхности которого составляет около шести тысяч градусов Цельсия.

Учёными было установлено, что энергия атомов носит дискретный характер и изменяется определёнными скачками, свойственными для каждого атома. Эти установленные возможные значения энергий атомов получили названия энергетических или квантовых уровней. Электроны, находясь на одном из высших энергетических уровней, самопроизвольно переходят на более низшие через промежуток времени порядка 10−8 секунды. При этом самопроизвольный переход из низшего состояния в любое другое невозможен. Этот уровень называется основным, в то время, как остальные — возбуждёнными. В нормальных условиях все атомы находятся в своих основных энергетических состояниях. Для того, чтобы возбудить атом, ему необходимо сообщить некоторую энергию, причём для каждого атома существует определённая наименьшая порция энергии, переводящая из основного состояния в возбуждённое (так для водорода эта величина равна 10,1 эВ — это расстояние между его первым и вторым энергетическими уровнями).

При переходе из более высоких состояний в более низкие испускается порция энергии — фотон. Согласно формуле Планка испускаемая энергия рассчитывается так:


E=hνnm{\displaystyle E=h\nu _{nm}},

где h — постоянная Планка, а νnm — частота фотона при переходе из уровня n на уровень m (n>m), которую можно рассчитать через энергии этих уровней: νnm=En−Emh{\displaystyle \nu _{nm}={\frac {E_{n}-E_{m}}{h}}}

С ростом температуры тела излучение дополняется всё более высокими частотами. Таким образом, излучение тела, нагретого до нескольких тысяч градусов, будет представлять сплошной спектр: от инфракрасного до ультрафиолетового.

Свойства затухания точечного источника света и прожектора

Эта функция определяет ослабление света в зависимости от дистанции. Чем дальше расположен объект от источника света, тем темнее он выглядит. Пользователь может задать отсутствие затухания, линейную инверсию или квадратичную инверсию. Для всех фотометрических источников света используется квадратичная инверсия затухания и не поддерживается использование пределов света. Настройки в категории «Затухание» отключены, если для системной переменной LIGHTINGUNITS задано значение 1 или 2.

Прим.: В продуктах на базе AutoCAD 2016 все освещение рассчитывается с использованием затухания на основе квадратичной инверсии. Этот параметр по-прежнему доступен для обеспечения совместимости с продуктами на базе AutoCAD 2015 и более ранних версий.

Доступны следующие типы затухания для стандартных источников света:

  • Нет. Затухание отключено. И далекие, и близкие к источнику света объекты освещаются одинаково.
  • Линейная инверсия. Задание величины затухания, обратно пропорциональной расстоянию от источника света до объекта. Например, на расстоянии 2 единицы от источника освещенность равна 1/2 от освещенности на источнике, на расстоянии 4 единицы — 1/4. По умолчанию, интенсивность при линейной инверсии равна половине максимальной интенсивности.
  • Квадратичная инверсия. Задание величины затухания, обратно пропорциональной квадрату расстояния от источника света до объекта. Например, на расстоянии 2 единиц от источника освещенность равна 1/4 от освещенности на источнике, на расстоянии 4 единиц — 1/16.

Прим.: В продуктах на базе AutoCAD 2016 все стандартные источники света рассчитываются как фотометрические. Рекомендуется обновить все стандартные источники света, используемые в сцене, и сделать их фотометрическими.

Еще один способ управления затуханием стандартных источников света — использование пределов. Пределы используются в виде секущих плоскостей, определяющих, откуда свет испускается и где прекращается. Задание пределов может способствовать повышению производительности, так как в этом случае уровни освещенности не вычисляются в тех областях, где свет является практически невидимым.

2.2. Световые величины

Энергетические величины являются исчерпывающими с энергетической
точки зрения, но они не позволяют количественно оценить визуальное восприятие
излучения. Восприятие глазом определяется не только мощностью воспринимаемого
излучения, но также зависит от его спектрального состава (так как глаз
– селективный приемник излучения). Световые характеристики описывают,
как энергию излучения воспринимает зрительная система глаза с учетом спектрального
состава света.

2.2.1. Световые величины

Световые величины обозначаются аналогично энергетическим
величинам, но без индекса.

– световой поток
– сила света
– освещенность
– светимость
– яркость

У световых величин нет никакой спектральной плотности,
так как глаз не может провести спектральный анализ.

Сила света:

Если в энергетических величинах исходная единица – это
, то в световых величинах
исходная единица – это сила света (так сложилось исторически). Сила света
определяется аналогично :

,
        (2.2.1)

– сила излучения эталона (эталонный излучатель или черное тело) при температуре
затвердевания платины ()
площадью .

Абсолютно черное тело

Рис.2.2.1. Абсолютно черное тело.

Поток излучения:

,
      (2.2.2)

– это поток, который излучается источником с силой света
в телесном угле :.

Освещенность:

,
      (2.2.3)

– освещенность такой поверхности, на каждый квадратный метр которой равномерно
падает поток в .

Светимость:

За единицу светимости принимают светимость такой поверхности,
которая излучает с
световой поток, равный .

Яркость:

За единицу яркости принята яркость такой плоской поверхности,
которая в перпендикулярном направлении излучает силу света с
.

2.2.2. Связь световых и энергетических
величин

Связь световых и энергетических величин связь устанавливается
через зрительное восприятие, которое хорошо изучено экспериментально.
Функция видности
– это относительная спектральная кривая эффективности . Она показывает, как глаз воспринимает излучение различного
спектрального состава.
– величина, обратно пропорциональная монохроматическим мощностям, дающим
одинаковое зрительное ощущение, причем воздействие потока излучения с
длиной волны
условно принимается за единицу. Функция видности глаза максимальна в области
желто-зеленого цвета (550–570 нм) и спадает до нуля для красных и фиолетовых
лучей (рис.2.2.2).

READ  Конденсаторные установки 6,3 - 10,5 кв

2.2.2. Функция видности глаза.

Определить некую световую величину
(поток, сила света, яркость, и т.д.), по спектральной плотности соответствующей
ей энергетической величины
можно по общей формуле:

        (2.2.4)

где
– функция видности глаза, 680 – экспериментально установленный коэффициент
(поток излучения мощностью
с длиной волны
соответствует
светового потока).

Например, сила света:      (2.2.5)яркость:      (2.2.6)

Другие единицы измерения световых величин:

сила света
яркость
освещенность

Сопоставление энергетических и световых единиц:

Энергетические Световые
Наименование и обозначение Единицы измерения Наименование и обозначение Единицы измерения
поток излучения световой поток
энергетическая сила света сила света
энергетическая освещенность освещенность
энергетическая светимость светимость
энергетическая яркость яркость

2.2.3. Практические световые величины
и их примеры

Световая экспозиция

Световая экспозиция
это величина энергии, приходящейся на единицу площади за некоторое время
(, накопленная
за время от
до ):

,
        (2.2.7)

Если освещенность постоянна, то экспозиция определяется
выражением:

      (2.2.8)

Блеск

Для протяженного источника характеристика, воспринимаемая
глазом – . Для характеристика, воспринимаемая глазом – блеск (чем больше
блеск, тем больше кажется яркость). Блеск – это величина, применяемая
при визуальном наблюдении точечного источника света.

Блеск
– это освещенность, создаваемая точечным источником в плоскости зрачка наблюдателя,
.

Видимый блеск небесных тел оценивается в звездных
величинах
.
Шкала звездных величин устанавливается следующим экспериментальным соотношением:

      (2.2.9)

Чем меньше звездная величина, тем больше блеск. Например: – блеск,
создаваемый звездой первой величины, – блеск,
создаваемый звездой второй величины.

Яркость некоторых источников, : – поверхность
солнца, – поверхность
луны, – ясное
небо, – нить лампы
накаливания, – ясное
безлунное ночное небо, – наименьшая
различимая глазом яркость.

Освещенность, : – освещенность,
создаваемая солнцем на поверхности Земли (летом, днем, при безоблачном
небе),– освещенность
рабочего места, – освещенность
от полной луны, – порог
блеска (примерно 8-ая звездная величина).

Решение задач на определение световых величин рассматривается
в практическом занятии «Энергетика
световых волн», пункт «1.2.
Расчет световых величин».

Полное внутреннее отражение

Если свет падает из оптически более плотной среды в оптически менее плотную среду, то с увеличением угла падения увеличивается угол преломления. При некотором значении угла падения угол преломления становится равным 90°. Преломленный луч будет скользить по поверхности раздела двух сред.

Предельный угол полного отражения – это угол падения, при котором угол преломления становится равным 90°:

Если вторая среда – воздух, ​\( n_2 \)​ = 1, то ​\( \sin\alpha_{пр.}=\frac{1}{n_1}. \)​.

При дальнейшем увеличении угла падения угол преломления тоже увеличивается и наблюдается только отражение света. Это явление называется полным отражением света.

Применение явления полного внутреннего отражения

Треугольная призма – прозрачное тело, ограниченное с трех сторон плоскими поверхностями так, что линии их пересечения взаимно параллельны.

Если призма изготовлена из оптически более плотного вещества, чем окружающая среда, то луч, дважды преломляясь, отклоняется к основанию призмы, а мнимое изображение источника света смещается к вершине призмы.

Преломляющий угол призмы – это угол, лежащий против основания.

Угол отклонения луча призмой – это угол между направлениями падающего на призму и вышедшего из призмы лучей.

​\( \varphi \)​ – преломляющий угол,

​\( \theta \)​ – угол отклонения луча призмой.

Важно! С помощью треугольной равнобедренной призмы с преломляющим углом 90° можно:

повернуть луч на 90° (поворотная призма, используется в перископах);

изменить направление луча на 180° (оборотная призма, используется в биноклях);

изменить относительное расположение лучей.

Законы геометрической оптики.

Геометрическая оптика изучает распространение световых лучей. Это исторически первый и наиболее простой раздел оптики. В основе геометрической оптики лежат четыре основных
закона.

1. Закон независимости световых лучей.
2. Закон прямолинейного распространения света.
3. Закон отражения света.
4. Закон преломления света.

Данные законы были установлены в результате наблюдений за световыми лучами и послужили обобщениями многочисленных опытных фактов. Они являются утверждениями, сформулированными на языке геометрии. Волновая природа света в них не затрагивается.

Законы геометрической оптики первоначально являлись постулатами. Они лишь констатировали: таким вот образом ведёт себя природа. Однако впоследствии оказалось, что законы геометрической оптики могут быть выведены из более фундаментальных законов волновой оптики.

Геометрическая оптика отлично работает, когда длина световой волны много меньше размеров объектов, присутствующих в данной физической ситуации. Можно сказать, что геометрическая оптика есть предельный случай волновой оптики при . Неудивительно поэтому, что сначала были открыты законы именно геометрической оптики: ведь размеры предметов, встречающихся нам в повседневной жизни, намного превышают длины волн видимого света.

Первый закон геометрической оптики совсем простой. Он говорит о том, что вклад каждого светового луча в суммарное освещение не зависит от наличия других лучей.Закон независимости световых лучей. Если световые лучи пересекаются, то они не оказывают никакого влияния друг на друга. Каждый луч освещает пространство так, как если бы других лучей вообще не было.

Закон прямолинейного распространения света также очень прост, и мы его сейчас обсудим. Законам отражения и преломления будут посвящены следующие разделы.

Закон прямолинейного распространения света. В прозрачной однородной среде световые лучи являются прямыми линиями.

Что такое «прозрачная однородная среда»? Среда называется прозрачной, если в ней может распространяться свет. Среда называется однородной, если её свойства не меняются от точки
к точке. Равномерно прогретый воздух, чистая вода, стекло без примесей — всё это примеры прозрачных и оптически однородных сред.

READ  Трансформаторы однофазные серии осм

Таким образом, закон прямолинейного распространения света означает, что в прозрачной однородной среде понятие светового луча совпадает с понятием луча в геометрии.

Данный закон не требует каких-либо дополнительных пояснений — он хорошо вам известен. Вам неоднократно доводилось видеть прямолинейные солнечные лучи, пронизывающие облака, или тонкий прямой луч, пробивающийся в запылённой комнате через щель в окне. Находясь под водой, можно наблюдать прямые солнечные лучи, идущие сквозь воду.

При нарушении однородности среды нарушается и закон прямолинейного распространения света. Например, на границе раздела двух прозрачных сред световой луч может разделиться на два луча: отражённый и преломлённый. Если оптические свойства среды меняются от точки к точке, то ход световых лучей искривляется. В этом состоит причина миражей: слой воздуха вблизи раскалённой земной поверхности нагрет больше, чем вышележащие слои; он имеет иные оптические свойства, и его действие оказывается подобным зеркалу. Обо всём этом мы поговорим позднее.

Классификация источников света

Нет ни одной отрасли народного хозяйства, где бы ни использовалось искусственное освещение. Начало развития отрасли производства источников света было положено в 19 веке. Поводом для этого послужило изобретение дуговых ламп и ламп накаливания.

Тело, излучающее свет в результате преобразования энергии называется источником света. Почти все производимые в настоящее время типы источников света являются электрическими. Это значит, что для создания светового излучения в качестве первичной затрачиваемой энергии используют электрический ток. Источниками света считают приборы с излучением света не только в видимой части спектра (длинны волн 380 – 780 нм), но и ультрафиолетовой (10 – 380 нм) и инфракрасной (780 – 106 нм) областях спектра.

Различают следующие виды источников света: тепловые, люминесцентные и светодиодные.

Тепловые источники излучения являются самыми распространенными. Излучение в них появляется вследствие нагревания тела накала до темпер, при которых появляется не только тепловое излучение в инфракрасном спектре, но и наблюдается видимое излучение.

Люминесцентные источники излучения способны излучать свет не зависимо от того в каком состоянии находится их излучающее тело. Свечение в них возникает  через преобразование различных видов энергии непосредственно в оптическое излучение.

В светодиодных источниках излучения свет образуется в полупроводниковом кристалле при  переходе электронов с одного энергетического уровня на другой, в результате чего происходит излучение фотонов. Подробнее об этом можно прочесть в статье «Светодиодные лампы».

На основании изложенных различий источники света делят на четыре класса.

Тепловые

Сюда относят всевозможные типы ламп накаливания, включая галогенные, а также электрические инфракрасные нагреватели и  угольные дуги.

Люминесцентные

К ним относят следующие виды электрических ламп: дуговые ртутные лампы, различные лампы тлеющего разряда, люминесцентные лампы низкого давления, лампы дугового, импульсного и высокочастотного разряда, в том числе и те, в которые добавлены пары металлов или на колбу которых нанесено люминофорное покрытие.

Смешанного излучения

Такие виды ламп освещения одновременно используются тепловое и люминесцентное излучение. Примером могут служить дуги высокой интенсивности.

Светодиодные

Кроме того, существуют другие признаки по которым производится классификация ламп (по области применения, конструктивно-технологическим признакам и тому подобные).

Импульсный блок питания или линейный. История вопроса

Наверно ни для кого не секрет, что большинство специалистов, радиолюбителей и просто технически грамотных покупателей источников питания с опаской относятся к импульсным блокам питания, отдавая предпочтение линейным.

Причина проста и понятна. Репутация импульсных блоков питания серьезно подорвана еще в 80-х годах, во времена массовых отказов отечественных цветных телевизоров, низкокачественной импортной видеотехники, оснащенных первыми импульсными блоками питания.

Что мы имеем на сегодняшний день? Практически во всех современных телевизорах, видеоаппаратуре, бытовой технике, компьютерах используются импульсные
блоки
питания
. Все меньше и меньше сфер применения линейных (аналоговых, параметрических) источников. Линейный источник электропитания сегодня в бытовой аппаратуре практически не найдёшь. А стереотип остался. И это не консерватизм, несмотря на бурный прогресс электроники, преодоление стереотипов происходит очень медленно.

Давайте попробуем объективно посмотреть на сегодняшнее положение и попробуем изменить мнение специалистов. Рассмотрим «стереотипные» и присущие импульсным блокам питания недостатки: сложность, ненадёжность, помехи.

Импульсный блок питания. Стереотип «сложность»

Да, импульсные блоки питания
сложные, точнее сказать сложнее аналоговых, но намного проще компьютера или телевизора. Вам не нужно разбираться в их схемотехнике, так же как и в схемотехнике цветного телевизора. Оставьте это профессионалам. Для профессионалов там нет ничего сложного.

Импульсный блок питания. Стереотип «ненадёжность»

Элементная база импульсного блока питания не стоит на месте. Современная комплектация, применяемая в импульсных блоках питания, позволяет сегодня с уверенностью сказать: ненадёжность — это миф. В основном надежность импульсного блока питания, как и любого другого оборудования, зависит от качества применяемой элементной базы. Чем дороже импульсный блок питания, тем дороже элементная база в нем. Высокая интеграция позволяет реализовать большое количество встроенных защит, которые порой недоступны в линейных источниках.

5.4. Источники света

Direct3D поддерживает источники света трех типов.

  • Точечный свет (point light) — У этого источника света есть местоположение в пространстве и он испускает свет во всех направлениях.

    Рис. 5.4. Точечный свет

  • Направленный свет (directional light) — У этого источника света нет местоположения, он испускает параллельные световые лучи в заданном направлении.

    Рис. 5.5. Направленный свет

  • Зональный свет (spot light) — Источник света данного типа похож на фонарик; у него есть местоположение и он испускает конический сноп лучей в заданном направлении. Световой конус характеризуется двумя углами — φ и θ. Угол φ задает размер внутреннего конуса, а угол θ — внешнего.

    Рис. 5.6. Зональный свет

READ  Токопроводящий клей (часть 2). рецепты приготовления клея. применение

В коде источники света представляются структурой D3DLIGHT9.

typedef struct _D3DLIGHT9 {
     D3DLIGHTTYPE Type;
     D3DCOLORVALUE Diffuse;
     D3DCOLORVALUE Specular;
     D3DCOLORVALUE Ambient;
     D3DVECTOR Position;
     D3DVECTOR Direction;
     float Range;
     float Falloff;
     float Attenuation0;
     float Attenuation1;
     float Attenuation2;
     float Theta;
     float Phi;
} D3DLIGHT9;
  • Type — Задает тип источника света и может принимать одно из трех значений: D3DLIGHT_POINT, D3DLIGHT_SPOT или D3DLIGHT_DIRECTIONAL.

  • Diffuse — Цвет рассеиваемой составляющей испускаемого источником света.

  • Specular — Цвет отражаемой составляющей испускаемого источником света.

  • Ambient — Цвет фоновой составляющей испускаемого источником света.

  • Position — Вектор, задающий местоположение источника света в пространстве. Для направленного света значение не используется.

  • Direction — Вектор, задающий направление, в котором распространяется свет. Для точечного света не используется.

  • Range — Максимальное расстояние, на которое может распространиться свет прежде чем окончательно потухнет. Значение не может быть больше чем √FLT_MAX и не оказывает влияния на направленный свет.

  • Falloff — Значение используется только для зонального света. Оно определяет как меняется интенсивность света в пространстве между внутренним и внешним конусами. Обычно этому параметру присваивают значение 1.0f.

  • Attenuation0, Attenuation1, Attenuation2 — Переменные затухания, определяющие как меняется интенсивность света с увеличением расстояния до источника света. Эти переменные используются только для точечного и зонального света. Переменная Attenuation0 задает постоянное затухание, Attenuation1 — линейное затухание и Attenuation2 — квадратичное затухание. Вычисления выполняются по формуле

    где D — это расстояние от источника света, а A, A1, A2 соответственно Attenuation0, Attenuation1 и Attenuation2.

  • Theta — Используется только для зонального света; задает угол внутреннего конуса в радианах.

  • Phi — Используется только для зонального света; задает угол внешнего конуса в радианах.

Подобно инициализации структуры D3DMATERIAL9, в том случае, когда нам нужны только простые источники света, инициализация структуры D3DLIGHT9 становится рутинным занятием. Поэтому для инициализации простых источников света мы добавим в файлы d3dUtility.h/cpp следующие функции:

namespace d3d
{
.
.
.
D3DLIGHT9 InitDirectionalLight(D3DXVECTOR3* direction,
                               D3DXCOLOR* color);

D3DLIGHT9 InitPointLight(D3DXVECTOR3* position,
                         D3DXCOLOR* color);

D3DLIGHT9 InitSpotLight(D3DXVECTOR3* position,
                        D3DXVECTOR3* direction,
                        D3DXCOLOR* color);
}

Реализация этих функций не содержит сложных моментов. Мы рассмотрим только реализацию InitDirectionalLight. Остальные функции похожи на нее:

D3DLIGHT9 d3d::InitDirectionalLight(D3DXVECTOR3* direction,
                                    D3DXCOLOR* color)
{
     D3DLIGHT9 light;
     ::ZeroMemory(&light, sizeof(light));

     light.Type      = D3DLIGHT_DIRECTIONAL;
     light.Ambient   = *color * 0.4f;
     light.Diffuse   = *color;
     light.Specular  = *color * 0.6f;
     light.Direction = *direction;

     return light;
}

Теперь для создания источника направленного света белого цвета, испускающего лучи вдоль оси X в положительном направлении, можно написать:

D3DXVECTOR3 dir(1.0f, 0.0f, 0.0f);
D3DXCOLOR   c = d3d::WHITE;
D3DLIGHT9 dirLight = d3d::InitDirectionalLight(&dir, &c);

После того, как мы инициализировали экземпляр D3DLIGHT9, нам надо зарегистрировать его во внутреннем списке управляемых Direct3D источников света. Делается это вот так:

Device->SetLight(
     0, // устанавливаемый элемент списка источников света, диапазон 0 - maxlights
     &light);// адрес инициализированной структуры D3DLIGHT9

После регистрации источника света мы можем включать его и выключать, как показано в приведенном ниже фрагменте кода:

Device->LightEnable(
     0, // Включаемый или выключаемый источник света в списке
     true); // true = включить, false = выключить
netlib.narod.ru Оглавление | Далее >

Сайт управляется системой uCoz

Фотометрические свойства

Фотометрическое освещение обладает дополнительными свойствами, которые позволяют сделать его отличным от стандартного. Указанные ниже свойства доступны на панели «Фотометрические свойства».

  • Интенсивность лампы. Определяет собственную яркость источника света. Задается интенсивность, световой поток или освещенность для лампы.
  • Итоговая интенсивность. Указывает фактическую яркость источника света. (Произведение интенсивности лампы на коэффициент интенсивности. Доступно только для чтения.)
  • Цвет лампы. Задает собственный цвет источника света в температуре по Кельвину или по стандарту.
  • Итоговый цвет. Указывает фактический цвет источника света. Это значение определяется комбинацией цвета лампы и цвета фильтра. (Определяется цветом лампы и цветом фильтра. Доступно только для чтения.)

Если для свойства «Тип» фотометрического источника света выбрано значение «Сетка», на панелях «Фотометрическая сетка» и «Смещения сетки» в категории «Освещение» становятся доступными дополнительные свойства.

Интенсивность света

Любой источник света характеризуется своей интенсивностью — средним по времени значением величины вектора Пойнтинга:

I=⟨|S→|⟩=⟨|E→×H→|⟩{\displaystyle I=\langle |{\vec {S}}|\rangle =\langle ||\rangle }

Таким образом, интенсивность пропорциональна квадрату амплитуды колебаний электромагнитного поля:

I∼E2∼B2{\displaystyle I\sim E_{0}^{2}\sim B_{0}^{2}}

Через значение напряжённости электрического поля её можно выразить следующим образом:


I=εcεμE22{\displaystyle I={\frac {\varepsilon _{0}c{\sqrt {\varepsilon \mu }}E_{0}^{2}}{2}}},

где ε{\displaystyle \varepsilon _{0}} — диэлектрическая постоянная, c=1εμ{\displaystyle c={\frac {1}{\sqrt {\varepsilon _{0}\mu _{0}}}}} — электродинамическая постоянная (скорость света в вакууме), εμ{\displaystyle {\sqrt {\varepsilon \mu }}} — показатель преломления среды, μ{\displaystyle \mu } — магнитная проницаемость вещества, ε{\displaystyle \varepsilon } — диэлектрическая проницаемость вещества.

Оперируя понятием среднего по времени значения величины вектора Пойнтинга, обычно подразумевают, что усреднение проводится либо по бесконечному промежутку времени, либо по интервалу существенно превышающему характерное время изменения напряжённости электрического поля. Однако, при регистрации интенсивности время усреднения определяется временем интегрирования фотоприемника, а для устройств, работающих в режиме накопления сигнала (фотокамеры, фотоплёнка и т. п.), временем экспозиции. Поэтому приемники излучения оптического диапазона реагируют на среднее значение потока энергии лишь в некотором интервале. То есть сигнал с фотоприемника пропорционален:

c4π⟨E2⟩τ{\displaystyle {\frac {\mathrm {c} }{4\pi }}\langle E^{2}\rangle _{\tau }}

Так как в большинстве случаев физической оптики, например в задачах связанных с интерференцией и дифракцией света, исследуется в основном пространственное положение максимумов и минимумов и их относительная интенсивность, постоянные множители, не зависящие от пространственных координат, часто не учитываются. По этой причине часто полагают:

I=⟨E2⟩τ{\displaystyle \mathbf {} I=\langle E^{2}\rangle _{\tau }}

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: