Блок питания с защитой от короткого замыкания

Как найти короткое замыкание?

Для поиска короткого замыкания своими руками, не всегда нужно иметь при себе специальные приборы. В некоторых случаях можно обойтись и без проф. инструмента. Конечно на практике наших электриков бывали случаи, когда замыкание найти не удавалось. Но мы напишем про эти случаи в самом конце.

Визуальный осмотр Оплавления, запах
По хлопку Способ для опытных электриков с большими ушами
Вскрытие Разбор всей электрики и щитов
Прозвонка Вызванивание цепей мультиметром
Трассоискатель Проф оборудование и специально обученный человек

Визуальный осмотр

Первый и самый гуманный способ поиска короткого замыкания, – это визуальный осмотр. Конечно если вы не профессиональный электрик, то время так называемого визульного осмотра, может затянуться не на один день. Но, начать осмотр в первую очередь необходимо с «сердца» проводки — электрического щита. Потом необходимо выключить все электроприборы из розеток и перевести выключатели света в положение выкл. Внимательно осмотреть все розетки и открытые места коммутации. Также рекомендуется осмотреть распаечные коробки, при свободном доступе к ним. Характерным наличием КЗ может являться запах гари, например из розетки.

Сгоревшие розетки

Второй способ – по хлопку

Это самый простой и быстрый способ найти короткое замыкание. Многие, даже матёрые электрики, про него частенько забывают. Если в месте кроме щита с автоматом, происходит хлопок — значит замыкание нужно искать там. Конечно же у этого способа есть и свои минусы, которые нужно знать и понимать. При использовании такого метода главное не испортить оборудование или не сжечь всю проводку или квартиру.

Электрик большое ухо

Третий способ – Вскрытие

Не пугайтесь, вскрытие означает то, что вам необходимо вскрыть все розетки, распаечные коробки и другие места коммутации (люстры, светильники, выключатели). Конечно нужно учесть, что потом их придется собирать обратно.

Четвертый способ — прозвонка

Если визуальный поиск и вскрытие не помогает, следующим этапом поиска может быть прозвонка всех электрических цепей мультиметром. При помощи прозвонки можно локализовать проблемный участок цепи. При прозвонке, все цепи рассоединяются (то есть разбирается всё): размыкаются розетки, отключаются линии от автоматов, отсоединяются люстры, распутываются провода в распаечных коробках. После чего каждый участок цепи вызванивается на наличие короткого замыкания ОТДЕЛЬНО. Всё это необходимо делать последовательно – от простого к сложному.

Способ №5 — спец оборудование

Ну и высшей точкой профессионального поиска коротких замыканий, является поиск при помощи профессионального инструмента (и натренированного мозга). Профессиональный поиск замыкания осуществляется трассоискателем. Волшебный прибор сможет достаточно точно показать место замыкания. Конечно перед работой с трассоискателем, необходимо произвести подготовительные работы и обладать некоторыми навыками хорошего электрика.

Какими бывают защитные устройства

Классификация устройств, которые делают безопасными электрические сети, довольно сложна. По той причине, что одно и то же устройство применяется в различных областях и с разными целями. А алгоритм их работы нередко состоит из нескольких этапов, каждый из которых может быть использован для защиты как единственный метод. Основными критериями классификации являются:

  • По сфере применения – для защиты людей или технических устройств.
  • По способу реакции – пассивные и активные.

В подавляющем большинстве случаев принцип их работы основан на физическом проявлении действия электрического тока – нагреве или притягивании металлических деталей в поле действия магнитного поля, им порожденного.

Устройство и принцип действия

Принцип работы заключается в срабатывании датчика (реле) тока при превышении Iуставки на защищаемом участки линии, после чего для обеспечения селективности с определенной задержкой срабатывает реле времени.

Где она применяется? Максимальную токовую защиту устанавливают в начале линии, то есть со стороны генератора или трансформатора питающей подстанции.

Важно! Зона действия МТЗ лежит в пределах между источником питания (ТП или генератором) и потребителем (ТП или другим ВВ оборудованием). При этом она устанавливается со стороны источника, а не потребителя

Но зоны действия ступеней могут пересекаться друг с другом. Например, 1 ступень часто перекрывает зону действия второй ступени вблизи от разъединителя, где Iкз почти равны с предыдущим участком линии.

Выдержка времени срабатывания защиты подбирается так, что первая ступень (на питающей ТП) срабатывает через самый большой промежуток времени, а каждая последующая быстрее предыдущей.

Интересно: разница выдержки времени срабатывания на ближайшей к источнику питания от следующей после нее МТЗ называется ступенью селективности.

Обеспечение селективности важно для бесперебойной подачи электропитания по как можно большему количеству электрических линий. С её помощью отключаемая часть уменьшается и локализуется на участке между коммутационными аппаратами как можно ближайшими к поврежденному участку

При этом, при возникновении кратковременных самоустраняемых перегрузок, связанных с пуском мощных электродвигателей, выдержка времени и отключение по минимальному напряжению должны обеспечить подачу электроэнергии в сеть без её отключения. При КЗ, напряжения резко уменьшаются, а при пуске двигателей такой просадки обычно не происходит.

Выбор уставок по току происходит по наименьшему Iкз из всей цепи, учитывая особенности работы подключенного оборудования. Это нужно опять же для того, чтобы максимальная токовая защита не сработала при самозапуске электродвигателей.

Перегрузка может возникнуть по трем причинам:

  1. При однофазном замыкании на землю.
  2. При многофазном замыкании.
  3. При перегрузки линии из-за повышенного потребления мощности.
READ  Как работают релейная защита и автоматика

Итак, максимальная токовая защита необходима для предотвращения разрушения линий электропередач, жил кабелей и шин на подстанциях и потребителях электроэнергии, таких как мощные электродвигатели 6 или 10 кВ и прочие электроустановки.

Организация контура заземления в частном секторе

Не секрет, что сегодня многие квартируют в собственных домах. Не всегда проектирующие организации предусматривают все. В электрическом проекте дома может отсутствовать проверка контура заземления. Можно достаточно качественно собрать эту конструкцию самостоятельно. Для этого понадобятся немного арматуры, хорошая лопата и умелые руки. Необходимо вырыть во дворе ров любой формы глубиной порядка одного метра и шириной около трети метра. Длина ямы должна быть не менее 8 метров. Через каждые полтора метра в дно ямы вбиваются стержни арматуры длиной 50 см. Вся конструкция напоминает ленточно-свайный фундамент, поэтому для людей, следующих в строительстве, сама картина не будет нова.

Контур заземления

Вбитые стержни арматуры нужно объединить между собой стальным профилем любой формы и достаточно большого сечения. Как правило, подойдут практически любые уголки

Важно, чтобы в месте сварки был надежный электрический контакт. Можно ли соединить углы проволокой, как делают с арматурой наливного фундамента? Мы не гарантируем, что через какое-то время такая конструкция не выйдет из строя

Наверняка углы проржавеют, и электрический контакт потеряется.

Собранную конструкцию нужно соединить с домовой шиной заземления достаточно толстым медным проводом. Не имеет значения одна жила имеется или несколько, главное, чтобы сопротивление было достаточно малым. Это может быть, к примеру, обычный медный провод для внешнего монтажа сравнительно большого сечения. Допустим, 6 квадратных миллиметров.

После сборки контура заземления необходимо проверить его сопротивление. Нормальное значение должно составлять доли Ома. Наверняка у многих не имеется дома специального оборудования для измерения сопротивления заземления. На этот случай радиолюбители предлагают использовать весьма оригинальный метод. Для этого неплохо бы под рукой иметь трансформатор, чтобы не перегрузить сеть. Выходное напряжение его может быть достаточно стандартным, например, 9, 12 или 27 вольт. Через сопротивление небольшого номинала допустим, 50 ом, мы начинаем пропускать ток сквозь наш контур заземления. В результате образуется резистивный делитель, значения плеч которого пропорциональны падающему здесь напряжению.

Затем нужно измерить падение напряжения на нашем сопротивлении. Допустим, что при номинале 27 вольт у нас получился значение 26,8. Теперь мы можем посчитать сопротивление нашего заземления из простой пропорции. 26,8/0,2 = 50/R, где R и является искомым значением. В результате получается 0,37 Ом. Вычисленная величина немного превышает желаемое значение. Поэтому со стороны присоединения шины контура заземления можно выкопать ров в другую сторону и дополнительно в контур вбить арматуру и сварить стальным профилем. Это увеличит контакт конструкции с землей, что приведет к снижению сопротивления до заданного значения. Напоминаем, что это 0,1 Ома.

Внутри помещений лепесток каждой розетки должен присоединяться к смонтированной шине заземления. Отдельно нужно поговорить про кухню и ванную комнату. В этих местах полагается по стандарту монтировать системы уравнивания потенциалов. Столь грозно звучащие слова на самом деле означают лишь то, что все металлические части, контактирующие с водой, объединяются между собой медными жилами достаточно большого сечения. В свою очередь оба контура уравнивания потенциалов объединяются между собой и вместе присоединяются к шине заземления дома.

Короткое замыкание

Когда найти замыкание не предоставляется возможным

Иногда найти короткое замыкание просто невозможно. И в некоторых случаях даже профессиональный трассоискатель не сможет помочь. Приходиться прокладывать новую линию, менять автоматы или менять проводку целиком. Обычно это бывает из-за сверх неквалифицированного монтажа электрики. Например большие скрутки различных проводов прячутся под толстым слоем раствора и замурованы где-нибудь глубоко в стене (или полу). При чем эти скрутки служат, так называемым коммутационным узлом, от которого во все стороны расходится проводка по квартире.  Сверху можно добавить нарушенную изоляцию проводов и растекание тока по перекрытиям. Такие чудеса случаются, и к несчастью владельцев таких ремонтов — это не лечиться никакими приборами и электриками.

Подпишись на RSS!

Подпишись на RSS и получай обновления блога!

Получать обновления по электронной почте:

    • Транзисторный ключ с ограничением тока
      3 июня 2020
    • Зарядное для аккумуляторов шуруповерта на базе XL4015
      5 апреля 2020
    • Зарядное для авто со стабилизацией тока на L200
      19 марта 2020
    • Индикатор шестиразрядный на TM1637
      13 марта 2020
    • Регулируемый стабилизатор тока на L200
      11 марта 2020
    • Зарядное устройство для автомобильных аккумуляторов — 237 415 просмотров
    • Стабилизатор тока на LM317 — 173 565 просмотров
    • Стабилизатор напряжения на КР142ЕН12А — 124 884 просмотров
    • Реверсирование электродвигателей — 101 711 просмотров
    • Зарядное для аккумуляторов шуруповерта — 98 414 просмотров
    • Карта сайта — 96 063 просмотров
    • Зарядное для шуруповерта — 88 427 просмотров
    • Самодельный сварочный аппарат — 87 815 просмотров
    • Схема транзистора КТ827 — 82 457 просмотров
    • Регулируемый стабилизатор тока — 81 416 просмотров
    • DC-DC (4)
    • Автомат откачки воды из дренажного колодца (5)
    • Автоматика (34)
    • Автомобиль (3)
    • Антенны (2)
    • Ассемблер для PIC16 (3)
    • Блоки питания (30)
    • Бурение скважин (6)
    • Быт (11)
    • Генераторы (1)
    • Генераторы сигналов (8)
    • Датчики (4)
    • Двигатели (7)
    • Для сада-огорода (11)
    • Зарядные (17)
    • Защита радиоаппаратуры (8)
    • Зимний водопровод для бани (2)
    • Измерения (34)
    • Импульсные блоки питания (2)
    • Индикаторы (6)
    • Индикация (10)
    • Как говаривал мой дед … (1)
    • Коммутаторы (6)
    • Логические схемы (1)
    • Обратная связь (1)
    • Освещение (3)
    • Программирование для начинающих (16)
    • Программы (1)
    • Работы посетителей (7)
    • Радиопередатчики (2)
    • Радиостанции (1)
    • Регуляторы (5)
    • Ремонт (1)
    • Самоделки (12)
    • Самодельная мобильная пилорама (3)
    • Самодельный водопровод (7)
    • Самостоятельные расчеты (37)
    • Сварка (1)
    • Сигнализаторы (5)
    • Справочник (13)
    • Стабилизаторы (16)
    • Строительство (2)
    • Таймеры (4)
    • Термометры, термостаты (27)
    • Технологии (21)
    • УНЧ (2)
    • Формирователи сигналов (1)
    • Электричество (4)
    • Это пригодится (12)
  • Архивы
    Выберите месяц Июнь 2020  (1) Апрель 2020  (1) Март 2020  (3) Февраль 2020  (2) Декабрь 2019  (2) Октябрь 2019  (3) Сентябрь 2019  (3) Август 2019  (4) Июнь 2019  (4) Февраль 2019  (2) Январь 2019  (2) Декабрь 2018  (2) Ноябрь 2018  (2) Октябрь 2018  (3) Сентябрь 2018  (2) Август 2018  (3) Июль 2018  (2) Апрель 2018  (2) Март 2018  (1) Февраль 2018  (2) Январь 2018  (1) Декабрь 2017  (2) Ноябрь 2017  (2) Октябрь 2017  (2) Сентябрь 2017  (4) Август 2017  (5) Июль 2017  (1) Июнь 2017  (3) Май 2017  (1) Апрель 2017  (6) Февраль 2017  (2) Январь 2017  (2) Декабрь 2016  (3) Октябрь 2016  (1) Сентябрь 2016  (3) Август 2016  (1) Июль 2016  (9) Июнь 2016  (3) Апрель 2016  (5) Март 2016  (1) Февраль 2016  (3) Январь 2016  (3) Декабрь 2015  (3) Ноябрь 2015  (4) Октябрь 2015  (6) Сентябрь 2015  (5) Август 2015  (1) Июль 2015  (1) Июнь 2015  (3) Май 2015  (3) Апрель 2015  (3) Март 2015  (2) Январь 2015  (4) Декабрь 2014  (9) Ноябрь 2014  (4) Октябрь 2014  (4) Сентябрь 2014  (7) Август 2014  (3) Июль 2014  (2) Июнь 2014  (6) Май 2014  (4) Апрель 2014  (2) Март 2014  (2) Февраль 2014  (5) Январь 2014  (4) Декабрь 2013  (7) Ноябрь 2013  (6) Октябрь 2013  (7) Сентябрь 2013  (8) Август 2013  (2) Июль 2013  (1) Июнь 2013  (2) Май 2013  (4) Апрель 2013  (7) Март 2013  (7) Февраль 2013  (7) Январь 2013  (11) Декабрь 2012  (7) Ноябрь 2012  (5) Октябрь 2012  (2) Сентябрь 2012  (10) Август 2012  (14) Июль 2012  (5) Июнь 2012  (21) Май 2012  (13) Апрель 2012  (4) Февраль 2012  (6) Январь 2012  (6) Декабрь 2011  (2) Ноябрь 2011  (9) Октябрь 2011  (14) Сентябрь 2011  (22) Август 2011  (1) Июль 2011  (5)

READ  Как работает аэс?

Устройство защиты от короткого замыкания

Устройство может быть электронным, электромеханическим или простым предохранителем. Электронные устройства в основном применяются в сложных электронных приборах, и мы рассматривать в рамках этой статьи их не будем. Остановимся на предохранителях и электромеханических устройствах. Для защиты бытовой электросети сначала применялись предохранители. Мы привыкли их видеть в виде «пробок» в электрощите.

Их было несколько типов, но вся защита сводилась к тому, что внутри этой «пробки» находился тонкий медный проводок, который перегорал, когда происходило короткое замыкание. Нужно было бежать в магазин, покупать предохранитель или хранить дома, возможно, не скоро потребующийся запас предохранителей. Это было неудобно. И на свет появились автоматические выключатели, которые сначала выглядели тоже как «пробки».

Это был простейший электромеханический автоматический выключатель. Выпускались они на разные токи, но максимальным значением было 16 ампер. Вскоре потребовались более высокие значения, да и технический прогресс позволил выпускать автоматы такими, какими мы сейчас их видим в большинстве электрических щитков наших домов.

Вариант 1

Это защита наиболее простая и отличается от аналогичных тем, что в ней не используются никакие транзисторы или микросхемы. Реле, диодная развязка – вот и все ее компоненты.

Работает схема следующим образом. Минус в схеме общий, поэтому будет рассмотрена плюсовая цепь.

Если на вход не подключен аккумулятор, то реле находится в разомкнутом состоянии. При подключении аккумулятора плюс поступает через диод VD2 на обмотку реле, вследствие чего контакт реле замыкается, и основной ток заряда протекает на аккумулятор.

Одновременно загорается зеленый светодиодный индикатор, свидетельствуя о том, что подключение правильное.

И если теперь убрать аккумулятор, то на выходе схемы будет напряжение, поскольку ток от зарядного устройства будет продолжать поступать через диод VD2 на обмотку реле.

Если перепутать полярность подключения, то диод VD2 окажется заперт и на обмотку реле не поступит питание. Реле не сработает.

В этом случае загорится красный светодиод, который нарочно подключен неправильным образом. Он будет свидетельствовать о том, что нарушена полярность подключения аккумулятора.

Диод VD1 защищает цепь от самоиндукции, которая возникает при отключении реле.

В случае внедрения такой защиты в , стоит взять реле на 12 В. Допустимый ток реле зависит только от мощности . В среднем стоит использовать реле на 15-20 А.

Как предотвратить КЗ, защита от него

Так как КЗ – это аварийный режим, то существуют способы защиты от этого опасного процесса и его предотвращения:

  • Быстродействующая электромагнитная или электронная защита от мгновенного увеличения тока в нагрузке или линии, которая максимально быстро отключит аварийный участок цепи от напряжения. Для этого используются автоматические выключатели, предохранители, дифференциальные автоматы. В домашних условиях для защиты от КЗ достаточно установить на группу приборов правильно рассчитанный автоматический выключатель (АВ).
  • Для высоковольтных линий и силовых цепей подстанций используются масляные (вакуумные и другие) аппараты коммутации с настроенной и проверенной защитой от резкого увеличения тока на отходящих линиях.
READ  Интеллектуальные системы уличного освещения

Способ предотвращения короткого замыкания в тот момент, когда этот процесс уже произошел, простой: он заключается в немедленном автоматическом отключении участка цепи от напряжения. В принципе, любой автоматический выключатель имеет внутри конструкции электромагнитный разцепитель, который при превышении номинального тока разрывает цепь нагрузки достаточно эффективно и быстро.

Важно! Защита от КЗ должна быть надёжной и быстродействующей, это два основных правила безопасной эксплуатации электрических цепей

Итог

С точки зрения КПД, первая схема лучше других. Но с точки зрения универсальности и скорости реагирования, лучший вариант – это схема 2. Ну а третий вариант часто применяется в промышленных масштабах. Такой вариант защиты можно увидеть, к примеру, на любой автомагнитоле.

Все схемы, кроме последней, имеют функцию самовосстановления, то есть работа восстановится, как только будет убрано короткое замыкание или изменится полярность подключения аккумулятора.

Прикрепленные файлы:

Как сделать простой Повер Банк своими руками: схема самодельного power bank

Практически каждый начинающий радиолюбитель стремится вначале своего творчества сконструировать сетевой блок питания, чтобы впоследствии использовать его для питания различных экспериментальных устройств. И конечно, хотелось бы, чтобы этот блок питания «подсказывал» об опасности выхода из строя отдельных узлов при ошибках или неисправностях монтажа.

На сегодняшний день существует множество схем, в том числе и с индикацией короткого замыкания на выходе. Подобным индикатором в большинстве случаев обычно служит лампа накаливания, включенная в разрыв нагрузки. Но подобным включением мы увеличиваем входное сопротивление источника питания или, проще говоря, ограничиваем ток, что в большинстве случаев, конечно, допустимо, но совсем не желательно.

Схема, изображенная на рис.1, не только сигнализирует о коротком замыкании, абсолютно не влияя на выходное сопротивление устройства, но и автоматически отключает нагрузку при закорачивании выхода. Кроме того, светодиод HL1 напоминает, что устройство включено в сеть, a HL2 светится при перегорании плавкого предохранителя FU1, указывая на необходимость его замены.

Электрическая принципиальная схема самодельного блока питания с защитой от коротких замыканий

Рассмотрим работу самодельного блока питания
. Переменное напряжение, снимаемое со вторичной обмотки Т1, выпрямляется диодами VD1…VD4, собранными по мостовой схеме. Конденсатеры С1 и С2 препятствуют проникновению в сети высокочастотных помех, а оксидный конденсатор С3 сглаживает пульсации напряжения, поступающего на вход компенсационного стабилизатора, собранного на VD6, VT2, VT3 и обеспечивающего на выходе стабильное напряжение 9 В.

Напряжение стабилизации можно изменить, подбирая стабилитрон VD6, например, при КС156А оно составит 5 В, при Д814А — 6 В, при ДВ14Б — В В, при ДВ14Г -10 В, при ДВ14Д -12 В. При желании выходное напряжение можно сделать регулируемым, для этого между анодом и катодом VD6 включают переменный резистор сопротивлением 3-5 кОм, а базу VT2 подключают к движку этого резистора.

Рассмотрим работу защитного устройстваблока питания
. Узел защиты от КЗ в нагрузке состоит из германиевого п-р-п транзистора VT1, электромагнитного реле К1, резистора R3 и диода VD5. Последний в данном случае выполняет функцию стабистора, поддерживающего на базе VT1 неизменное напряжение около 0,6 — 0,7 В относительно общего.

В обычном режиме работы стабилизатора транзистор узла защиты надежно закрыт, так как напряжение на его базе относительно эмиттера отрицательное. При возникновении короткого замыкания эмиттер VT1, как и эмиттер регулирующего VT3, оказывается соединенным с общим минусовым проводом выпрямителя.

Другими словами, напряжение на его базе относительно эмиттера становится положительным, вследствие чего VT1 открывается, срабатывает К1 и своими контактами отключает нагрузку, светится светодиод HL3. После устранения короткого замыкания напряжение смещения на эмиттерном переходе VT1 снова становится отрицательным и он закрывается, реле К1 обесточивается, подключая нагрузку к выходу стабилизатора.

Детали для изготовления блока питания.
Электромагнитное реле любое с возможно меньшим напряжением срабатывания. В любом случае должно соблюдаться одно непременное условие: вторичная обмотка Т1 должна выдавать напряжение, равное сумме напряжений стабилизации и срабатывания реле, т.е. если напряжение стабилизации, как в данном случае 9 В, а U
сраб реле 6 В, то на вторичной обмотке должно быть не менее 15 В, но и не превышать допустимое на коллекторе-эмиттере применяемого транзистора. В качестве Т1 на опытном образце автор использовал ТВК-110Л2. Печатная плата устройства изображена на рис.2.

Печатная плата блока питания

Это невероятно полезное приспособление, которое защитит ваш дом от короткого замыкания при проверке каких-либо тестируемых приборов. Бывают случаи, когда необходимо проверить электроприбор на отсутствие КЗ, к примеру, после ремонта. И чтобы не подвергать свою сеть опасности, подстраховаться и избежать неприятных последствий, как раз и поможет это очень простое устройство.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: