Пуэ-7 п.1.8.40 нормы приемо-сдаточных испытаний. силовые кабельные линии

Методы испытаний.

1. Проверка целости и фазировки жил кабеля.

Определение целости жил и фазировка КЛ производится после окончания монтажа, перемонтажа муфт или отсоединения жил кабеля в процессе эксплуатации.

Определение целости жил кабелей напряжением до 10кВ производится мегаомметром. После включения КЛ под напряжение производится проверка правильности ее фазировки.

Сущность фазировки под напряжением заключается в определении соответствия фазы кабеля, находящейся под напряжением от распределительного устройства с противоположного конца кабеля, предполагаемой одноименной фазе шин распределительного устройства, где производится фазировка. Для фазировки КЛ 6 и 10 кВ под напряжением применяются указатели напряжения 10 кВ в комплекте с добавочным сопротивлением рисунок №1. Целость и совпадение обозначений фаз подключаемых жил кабеля должна соответствовать.

Рис. №1 Фазировка кабельных линий под напряжением.

а – соответствие фаз кабеля и шин; б – разные фазы шин и кабеля в месте присоединения последнего; 1 – указатель напряжения; 2 – трубка сопротивления; 3 – провод; 4 – шина; 5 – концевая заделка; 6 – кабель; 7 – разъем спуска шин.

ВЫПРЯМИТЕЛЬНАЯ ЭЛЕКТРОННАЯ ЛАМПА (КЕНОТРОН)

Кенотронная лампа представляет собой герметически закрытый стеклянный баллон 1 (рис. 14) с очень глубоким вакуумом (10~6 мм рт. ст.). В нижней части кенотронной лампы расположен один электрод 2 в виде опирали, оба конца которого выведены в цоколь, как у обычной лампы. Этот электрод называется катодом. В верхней части лампы расположен другой электрод 3 га виде круглой пластинки с контактным выводом в виде шарика 4. Этот электрод называется анодом.


Рис. 14. Выпрямительная электронная лампа (кенотрон).
1 — стеклянный баллон; 2 — катод; 3 — анод; 4 — контактный вывод анода; 5 — цоколь катода.

Принцип действия кенотронной лампы основан на явлении термоэлектронной эмиссии, заключающейся в способности накаленного металла испускать со своей поверхности электроны. Большое количество свободных электронов, имеющихся в катоде (как и во всех металлах), не может покинуть его поверхность, так как при нормальной температуре их кинетическая энергия слишком мала. Если, однако, катод разогреть, то кинетическая энергия электронов возрастает. Из раскаленного катода электронной лампы поток электронов устремляется в сторону холодного анода. При этом чем выше температура катода, тем интенсивнее будет движение электронов. У катода поток электронов образует среду, сопротивление которой постоянно увеличиваясь прекратит процесс их дальнейшего движения. Однако если к электродам лампы приложить разность потенциалов, причем к аноду — положительный потенциал, а к катоду — отрицательный, то внутри лампы между электродами возникает электрическое поле, движение электронов возобновится и проводимость лампы восстановится. Если изменить полярность, т. е. присоединить минус батареи к аноду, а плюс — к катоду, тока в цепи не будет, так как испускаемые катодом электроны будут отталкиваться от отрицательного заряженного анода. Если к аноду вместо батареи присоединить источник переменного тока, то в момент, когда анод будет иметь положительный потенциал, ток будет проходить через лампу, а в момент отрицательного значения потенциала ток проходить не будет. В этом и заключается вентильное, т. е. избирательное действие кенотронной лампы.

READ  Технология проверки, наладки и испытания электрических аппаратов

Что еще важно знать?

После проведения испытательных работ результат вносится в протокол, такой, как на образце:

Что касается сроков проведения испытаний, они следующие:

Ну и немаловажно сказать о том, что для проведения работ чаще всего используют такие приборы, как ИВК-5, АИД-70 и АИИ-70!

Напоследок рекомендуем просмотреть полезное видео по теме:

Вот мы и рассмотрели, как производится испытание кабеля повышенным напряжением. Теперь вы знаете, для чего нужно производить проверки и какие методики существуют на сегодняшний день!

Рекомендуем также прочитать:

  • Как найти короткое замыкание в сети
  • Чередование фаз в трехфазной сети
  • Методики измерения сопротивления заземления

Токи утечки и коэффициенты асимметрии для силовых кабелей

При испытаниях отмечают характер изменения тока утечки. Кабель считается прошедшим испытания при отсутствии пробоя изоляции, скользящих разрядов и толчков (или нарастания) тока утечки после того, как испытательное напряжение достигнет нормативного значения. (Табл 1.8.40 ПУЭ п. 1.8.40) После испытания исправный кабель необходимо разрядить.

Здравствуйте, дорогие посетители и читатели сайта «Заметки электрика».

Сегодня я расскажу Вам про испытание кабельных линий. А именно, как правильно и в полном объеме испытать силовые кабели напряжением до и выше 1000 (В).

В данной статье мы рассмотрим испытания кабельных линий напряжением до и выше 1000 (В).

По верхней границе ограничимся напряжением до 10 (кВ) включительно, т.к. это самый распространенный класс напряжения, который применяется на большинстве наших предприятий и производств.

Для этого нам понадобятся, уже давно нами полюбившиеся, книги и ПТЭЭП.

Введение

Испытание кабельных линий — это очень серьезный вопрос, к которому необходимо подойти очень ответственно. В процессе эксплуатации или во время в кабельных линиях могут возникнуть следующие :

  • обрыв жилы
  • короткое замыкание жил между собой и на землю (старение изоляции, коррозия металлической оболочки)
  • утечка масла (это относится к маслонаполненным кабелям)
  • механические (в основном для кабелей, проложенных в земле)
  • прочее
READ  Капитальный ремонт лэп

Во время испытаний выявляются слабые места изоляции кабеля. Еще не редко наблюдаются дефекты и ошибки монтажа концевых и соединительных муфт.

Чтобы заблаговременно выявить все вышеперечисленные повреждения, необходимо проводить испытания силовых кабелей в соответствии с нормативными техническими документами ПУЭ и ПТЭЭП. Весь перечень испытаний кабельных линий перечислен в Главе 1.8, п. 1.8.40 издательства ПУЭ и в приложении 3, п.6 правил ПТЭЭП.

Вновь вводимое и находящееся в эксплуатации , а в нашем случае, силовые кабельные линии, должно подвергаться нижеперечисленным испытаниям.

Испытания кабельных линий необходимо проводить в нормальных погодных условиях.

Величины снятых замеров при испытании кабельных линий должны сравниваться с величинами предыдущих испытаний, включая заводские испытания.

После проведения испытаний силовых кабельных линий результаты испытаний оформляются протоколом установленной формы.

Пункт 2. Измерение сопротивления изоляции кабеля

После проведения фазировки кабеля и проверки его целостности необходимо провести изоляции силовых кабельных линий.

Измерение сопротивления изоляции кабельных линий требуется проводить мегаомметром напряжением 2500 (В) в течение 1 минуты.

В качестве мегомметра я использую прибор MIC-2500 от фирмы Sonel. С помощью этого прибора можно замерить сопротивление изоляции кабельных линий, а также произвести замер степени старения и увлажненности изоляции.

Но к этому прибору мы еще вернемся в следующих статьях. И я расскажу как им пользоваться.

Уважаемые, читатели моего блога, напомню Вам, что измерение сопротивления изоляции кабеля необходимо проводить только после проверки отсутствия напряжения на кабеле. Отсутствие напряжение в электроустановке проверяется с помощью .

В данном случае мы применяем или указатели низкого напряжения, в зависимости от класса напряжения нашей электроустановки.

И еще, в электроустановках напряжением выше 1000 (В), проводить электрические измерения сопротивления изоляции кабельной линии с помощью мегаомметра необходимо в .

Пункт 3. Испытание кабельных линий повышенным напряжением

Следующим шагом испытания кабельных линий является испытание кабелей повышенным напряжением выпрямленного тока. Все кабели выше 1000 (В) подвергаются этому испытанию.

Для более наглядного примера, все данные по испытательному напряжению, марки кабелей и длительности испытаний я привел в таблицу.

Пункт 4. Измерение токораспределения по одножильным кабелям

Измерение распределения токов проводится соответственно на одножильных кабельных линиях.

Неравномерность распределения токов по кабельным линиям должна составлять не более 10%, особенно если это может привести к перегрузке отдельных фаз.

Назначение

1.1. Инструкция проведения испытаний (ИПИ) разработана в качестве руководства для профильных сотрудников, выполняющих электротехнические испытания электроустановок.

READ  Схема управления пуском и динамическим торможением асинхронных двигателей

1.2. В настоящем документе определен порядок тестирования СКЛ (силовых кабельных линий) до 10 кВ.

1.3. Испытания СКЛ выполняются согласно требованиям:

  • гл. 1.8.37 ПУЭ-7;
  • гл. 2.4 приложение 3.1 таблицы 10,11 ПТЭЭП-2019;
  • гл. 29 таблицы 29.1, 29.211 РД34.45-51.300-97 «Объем и нормы испытаний электрооборудования».

1.4. Цель испытаний — тестирование соответствия измеренных параметров СКЛ или электроустановок требованиям ПУЭ-7.

Периодичность испытаний кабельных линий

Периодичность испытания кабелей 6-10 кВ

  • 1 раз в год — для основных и резервных кабельных линий, питающих особо ответственных потребителей;
  • 1 раз в 3 года — основные кабельные линии;
  • 1 раз в 5 лет — резервные кабельные линии.

Допускается не испытывать кабельные линии длиной до 60 м, являющихся выводами из трансформаторных подстанций (ТП, РП, РТП) на воздушные линии.

Периодичность испытания кабелей 0,4 кВ

Кабели на рабочее напряжение 0,4 кВ испытываются

  • вновь проложенные и после перекладки — перед включением;
  • после ремонта

Обратите внимание: Периодические испытания кабелей на номинальное напряжение до 1000 В для балансодержателей / сетевых организаций не регламентированы. В связи с этим — следует руководствоваться нормами ПУЭ и ПТЭЭП для электроустановок до 1000 В для зданий и сооружений

Периодичность 1 раз в 1-3 года. смотреть подробнее

НОРМЫ ИСПЫТАНИЯ

Напряжение испытательной установки должно быть выбрано в соответствии с наивысшим напряжением, принятым для испытываемой изоляции кабеля.
Согласно ПУЭ величины испытательных напряжений и продолжительность испытаний должны быть не \менее приведенных в табл. 1.

         Таблица 1
величины испытательных напряжений и продолжительность испытаний кабелей

Наименование кабеля

Номинальное напряжение кабеля, кВ

Испытательное напряжение, кВ

Продолжительность испытания, мин

С бумажной изоляцией

3—10

6 Uв

10

20—35

5 UB

10

110

300

15

220

450

15

С резиновой изоляцией

3

6

15

6

12

5

Приведенные значения испытательного напряжения в таблице даны на стороне выпрямленного напряжения; следовательно, действующее значение напряжения испытательной установки на стороне переменного тока будет в раз меньшим.

Ссылки по теме

  • Правила технической эксплуатации электроустановок потребителей
    / Нормативный документ от 9 февраля 2007 г. в 02:14
  • Библия электрика
    / Нормативный документ от 14 января 2014 г. в 12:32
  • Справочник по электрическим сетям 0,4-35 кВ и 110-1150 кВ. Том 10 
    / Нормативный документ от 2 марта 2009 г. в 18:12
  • Кабышев А.В., Тарасов Е.В. Низковольтные автоматические выключатели
    / Нормативный документ от 1 октября 2019 г. в 09:22
  • Правила устройства воздушных линий электропередачи напряжением до 1 кВ с самонесущими изолированными проводами
    / Нормативный документ от 30 апреля 2008 г. в 15:00
  • Князевский Б.А. Трунковский Л.Е. Монтаж и эксплуатация промышленных электроустановок
    / Нормативный документ от 17 октября 2019 г. в 12:36
  • Маньков В.Д. Заграничный С.Ф. Защитное заземление и зануление электроустановок
    / Нормативный документ от 27 марта 2020 г. в 09:05
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: