Интеллектуальные системы уличного освещения

Варианты уличного освещения

Уличное освещение городской инфраструктуры сочетает утилитарные и эстетические функции. В зависимости от месторасположения оно бывает:

Дорожное основное для магистралей и дополнительное — для второстепенных улиц и автомобильных дорог.

Для пешеходных зон. Осветительные системы располагают вдоль тротуаров и в жилых районах для безопасного перемещения и ориентации пешеходов.

Архитектурное. Оно обеспечивает подсветку зданий и памятников, создает световые акценты и способствует эффектному восприятию объектов.

Декоративное садово-парковое. Применяется для освещения скверов, парков, зон отдыха и прилегающего к различным сооружениям ландшафта. Для обозначения границ дорожек служит маркировочный свет, а с помощью локального подсвечивают с небольшого расстояния отдельные элементы.

Рекламное

Подсветка рекламных щитов, витрин магазинов, фасадов офисов различных организаций и торговых центров привлекает внимание целевой аудитории. Кроме того, она дополняет системы освещения, улучшая видимость на улицах.

Особого внимания заслуживает праздничная иллюминация, которая применяется в праздники и при проведении особых мероприятий, и создает торжественную атмосферу.

Элементы осветительных систем

Эффективность функционирования осветительных систем во многом зависит от соблюдения правил проектирования и характеристик используемого оборудования.

Одним из признаков «умного города» является многозадачность элементов, которые используются при монтаже уличного освещения. Для установки светильников целесообразно применять многофункциональные опоры, позволяющие подключать системы видеонаблюдения, связи, зарядки для электромобилей и поддержки интернета вещей. Возможна также интеграция опорных конструкций с «умными» пешеходными переходами и оборудованием для мониторинга дорожного движения.

В современную тенденцию интеллектуальных городов не вписываются традиционные источники света, но им полностью соответствуют LED технологии. Светодиодные светильники — оптимальный вариант для уличного освещения. Для них характерно следующее:

  • высокий индекс цветопередачи;
  • продолжительный срок службы;
  • экономное потребление энергии;
  • простота монтажа и обслуживания;
  • устойчивость к перепадам температур и воздействию влаги.

Светодиодные светильники нового поколения с беспроводным управлением обеспечивают интеграцию в систему «умный город». Они могут быть укомплектованы камерой видеонаблюдения и предусматривают возможность дистанционного контроля и регулировки уровня освещенности.

Следует также отметить, что преобразование традиционных осветительных сетей в системы «умный город» возможно при использовании качественного оборудования. Поэтому при монтаже уличного освещения нужно отдавать предпочтение сертифицированной продукции.

Системы автоматизированного управления освещением на базе решений от Phoenix Contact

Ядром системы управления является программируемый контроллер ILC 130 ETH. Контроллер имеет встроенные часы реального времени с возможностью синхронизации, что позволяет управлять контакторами линий освещения по заранее заданному расписанию. Разработанная программа управления освещением контролирует от одного до 26 контакторов. Причем переключение каждого контактора настраивается как по собственному отдельному расписанию, так и с возможностью объединения нескольких контакторов в групповое расписание. Расписание имеет возможность корректировки из диспетчерского центра. Каждый контактор может быть дистанционно включен, отключен или же временно переведен на альтернативное расписание.

Если вводить альтернативное расписание нецелесообразно, то произвести включение и выключение можно принудительной командой. Также заранее можно настроить возможность автоматического возврата на работу по расписанию, если при принудительном включении в течение заданного времени отсутствует связь с диспетчерским центром.

Связь с диспетчерским центром осуществляется по сети Ethernet. Для этого применяются любые доступные технологии, такие как оптоволоконные линии, сотовые сети 3G или ADSL. Для обеспечения защиты информации система управления может оснащаться межсетевым экраном с технологией VPN по протоколам IPSec или OpenVPN. Так как выделенные линии связи не всегда доступны, то наиболее часто связь осуществляется через Интернет, и шифрование данных с ограничением доступа необходимо для обеспечения безопасности объектов освещения. Связь по сети Ethernet имеет ряд преимуществ. Контроллеры доступны для программирования из сети, и для обслуживания или изменения программы под новое ТЗ нет необходимости выезжать на объект. Для синхронизации времени используется стандартный протокол NTP. Контроллер может подключаться к серверу точного времени в Интернете, к серверу времени диспетчерской или же к серверу времени своего локального маршрутизатора. Для наиболее эффективной синхронизации времени используются маршрутизаторы со встроенным приемником GPS/ГЛОНАСС TC MGUARD. Они получают координаты и точное время со спутников и передают эти данные на контроллер. Таким образом, кроме синхронизации времени, возможна точная привязка объекта к местности в модуле ГИС диспетчерского ПО в автоматическом режиме.

Рис. 2. Структура системы управления

Контроллер имеет возможность подключения собственного модуля измерения параметров электросети или счетчиков электроэнергии по интерфейсу RS485, таких как «Меркурий» или ПСЧ. Как уже говорилось, по измеренным значениям энергопотребления можно судить о количестве сгоревших ламп или нелегальном подключении к электросети. При первом запуске системы контроллер запоминает номинальные значения при полной нагрузке и при полном отключении различных каскадов. В процессе эксплуатации контроллеру можно выдать команду на перезапись данных параметров. На каждую линию освещения опционально устанавливается реле контроля, обеспечивающее диагностику неисправности на всем каскаде.

Рис. 3. Структура системы связи

Для обеспечения непрерывного функционирования системы в шкаф управления установлен блок бесперебойного питания, обеспечивающий автономную работу контроллера до 48 часов или более, в зависимости от батареи/аккумулятора. При наличии резервного ввода система управления может также выполнять функции АВР. При отсутствии напряжения на основном вводе система переключится на резервный.

Рис. 4. Архитектура системы диспетчеризации

Реальная экономия

Экономия электроэнергии в большом городе — вопрос актуальный, особенно для Москвы, которая никогда не спит. Во многих районах все чаще можно увидеть фонари, оснащенные приборами для самостоятельной выработки энергии.

Одни из первых таких устройств появились в природном заказнике «Долина реки Сетуни». Уличные светильники здесь работают от установленных на них солнечных батарей и мельниц-ветрогенераторов. Светильники с солнечными батареями есть и в народном парке возле озера Святое в Косино-Ухтомском районе.

Для экономии электроэнергии в столице постепенно внедряют систему умного освещения: если на участке улицы есть пешеходы или автомобили, то интенсивность света автоматически увеличивается, при отсутствии движения — снижается. Эта система помогает экономить до 50 процентов энергии.

Сергей Собянин — о повышении надежности системы электроснабжения МосквыПотери в электросетях сократились за год более чем на 100 миллионов киловатт-часов

Управление посредством переключения фаз

В случае применения этого типа управления наружным освещением регулирование интенсивности светового потока, например, ее снижение со 100 % до 60 %, осуществляется посредством переключения фаз.

Балласты (ПРА) светильников имеют два входа для подключения питания. Если на один из них подается постоянная фаза, то светильники работают, например, со 100-процентной мощностью светового потока. Когда же питающая фаза подключается и ко второму входу, интенсивность свечения ламп снижается. При повторном отключении управляющей фазы светильники снова разгораются на полную мощность. Посредством подключения управляющей фазы можно осуществлять скачкообразное снижение интенсивности освещения отдельных участков в то время, когда интенсивность пешеходного и дорожного движения на них снижается, что позволяет экономить электроэнергию. При реконструкции уличного освещения, например, с использованием двухпроводной сети электропитания, этот способ управления требует прокладки дополнительного провода. Как правило, он используется для реконструкции старых систем наружного освещения, реализованных на базе четырехпроводной системы электропитания, когда старые светильники заменяются современными с более высокой эффективностью, т.е. со сниженным энергопотреблением при одинаковом уровне светимости. Именно использование одной из трех фаз питания в качестве управляющей (переключаемой фазы) позволит достичь требуемых характеристик. Переключение управляющей и питающей фаз можно осуществлять централизованно, регулируя таким образом интенсивность освещения с помощью двухканального астрономического таймера или реле времени с сумеречным датчиком (датчиком освещенности).

READ  Частотное регулирование асинхронного двигателя

Функции уличного освещения

Вне зависимости от масштаба объекта — будь это придомовая территория или автомагистраль — его нужно освещать в темное время суток. Свет нужен для безопасного передвижения жильцов дома, обеспечения движения автотранспорта, декоративной подсветки зданий или их отдельных элементов, освещения рекламы на билбордах и т. д.

Что касается частного жилья, помимо освещения подъезда к дому, подсветка выполняет следующие функции:

общее освещение территории (важно с точки зрения безопасности);
освещение ступенек в дом;
подсветка пешеходных дорожек;
освещение локальных участков (например, возле беседки);
декоративная подсветка архитектурных и ландшафтных особенностей участка.

Особенно стоит отметить защитную роль уличного освещения. Благодаря хорошей видимости появляется возможность визуального контроля за территорией (в том числе техническими средствами). Яркий свет отпугивает людей с плохими намерениями. В освещенном дворе любой объект заметен: не каждый злоумышленник решится на несанкционированное проникновение.

Трековая система освещения

Сегодня от освещения зависит очень многое. Рынок таких приборов увеличивается с каждым днем, предлагая нам каждый раз новые инновационные технологии.

Трековая система освещения является оригинальным решением в области электрификации помещения. Это самое оптимальное решение, чтобы сформировать точечное и общее освещение.

Благодаря своим бесспорным особенностям, такой вид освещения становится очень популярным.

Трековая система освещения экономична, экологически безопасна, надежна и легкая в установке. За такими светильниками не нужно дополнительно следить. Они очень прочные.

Трековая система состоит из: токопровода, подвески, соединительные элементы и осветительного прибора. Их можно крепить не только на потолок, но и на стены.

Вся конструкция может располагаться на любой высоте и иметь светильники разных типов, которые возможно установить на трековую систему.

С помощью данной системы вы сможете осветить свое помещение в любом направлении и труднодоступных местах.

Напряжение трековых систем составляет всего 12 Вт. Это делает данное освещение безопасным и экономически выгодным. Плюс ко всему – это очень оригинальное дизайнерское решение, которое способно украсить интерьер вашей комнаты.

Светодиодные системы освещения

Данная технология стремительно движется вперед каждый день, при этом вытесняя с рынка обычные системы освещения. Благодаря светодиодам открывается очень много новых возможностей.

Светодиодные системы освещения имеют высокую интенсивность света, которая в 20 раз превышает обычные источники света.

Превосходство светодиодов несомненно:

  • отсутствие технического обслуживания;
  • высокая энергоэффективность (экономия до 80 процентов электрической энергии);
  • большой срок службы, порядка 10 – 20 лет;
  • работа при большом диапазоне температур (от -40 до + 40°С);
  • отсутствует риск воспламенения;
  • нет ртути;
  • высокая устойчивость к вибрациям;
  • не выделяют ультрафиолетовое излучение;
  • нет мерцания и т.д.

Спектр освещения в светодиодах максимально приближен к солнечному свету. Светодиодные системы освещения удобны тем, что позволят вам сэкономить не только лишь потребление электричества, но и покупку самой лампы.

Ее себестоимость конечно больше, чем у обычной, но если учитывать очень долгий срок службы, то это компенсируется. Вы сможете окупить данное устройство уже за месяц или два.

Светодиодные системы можно разместить в любом месте, куда обычная лампочка не помещается. С ними вы визуально освободите пространство над своей головой и уменьшите потолочную высоту.

Возможности автоматики

Автоматизированная система управления наружным светом позволяет решать целый ряд задач. Условно их можно разделить на две группы — управленческие функции и контрольные.

Функции управления:

  1. Включение и выключение светильников.
  2. Программирование работы приборов по времени или реакции датчиков.
  3. Фазовые переключения на электролиниях.
  4. Принудительная перезагрузка микропроцессоров в шкафе управления.

Функции контроля:

  1. Проверка состояния линий подключения.
  2. Контроль линий ввода.
  3. Контроль работы контакторов и выходных автоматов-выключателей.
  4. Наблюдение за приборами учета расхода электричества.
  5. Мониторинг несанкционированного доступа в шкаф.
  6. Проверка состояния линии.
  7. Изучение неисправностей системы.
  8. Слежение за наличием возгораний.

Системы управления уличным светом оснащаются встроенными источниками электропитания. Если отключается напряжение, система может работать еще не меньше часа. Во многих системах предусмотрена не только передача данных об изменениях параметров, но и дублированное сохранение информации.

PowerLine

Электронное управление освещением, а также мониторинг, осуществляемый посредством обмена данными с помощью электрических проводов без необходимости установки дополнительных кабелей для передачи данных и с сохранением всех функциональных характеристик системы освещения.

Для использования технологии PowerLine первичную сторону осветительной системы необходимо оснастить передатчиком PowerLine, а ее вторичную сторону, т.е. сами светильники — соответствующими приемниками. Как правило, светильники оснащаются традиционными диммируемыми пускорегулирующими аппаратами с интерфейсом DALI или 1—10 В. PowerLine позволяет устанавливать связь между элементом управления и обычным диммируемым светильником без необходимости создания дополнительной сети обмена данными. Точно так же, как и в случае использования протокола DALI, осветительная система полностью сохраняет свою функциональность, и при этом диспетчер со своего пульта может, например, регулировать интенсивность освещения на менее оживленных улицах в соответствующих интервалах, достигая таким образом существенной экономии электроэнергии. Или наоборот, с помощью ПК обеспечить дополнительное локальное освещение в случае проведения культурных мероприятий в освещенной части города или населенного пункта в вечернее время.

Система управления освещением

Такие устройства позволят увеличить энергетическую эффективность, существенно повысить комфорт жилья, облегчить эксплуатацию производственными зданиями.

Система управления освещением на аналоговом датчике способна снизить потребление электрической энергии. Благодаря передовым технологиям вы сможете получить большую экономию и дополнительные возможности. Такие системы намного превосходят обыкновенные методы управления светом.

Цифровая система управления освещением обладает дополнительным взаимодействием между всеми приборами, которые объединены в одну группу. Такие глобальные устройства основываются на микроконтроллерах, которые дают возможность применять заранее запрограммированные режимы освещения в доме, опираясь на сигналы от датчиков либо команды панелей управления.

При помощи датчиков движения свет в доме включится в тот момент, когда человек попадет в зону их действия.

Когда движение прекратилось, специальное устройство выключит свет. Такие системы чаще всего ставят там, где люди меньше всего ходят: лестничные пролеты, длинные коридоры, перед подъездами и т.п. Также, такие устройства могут сами включать свет при снижении естественного освещения ниже определенного уровня.

Задачи, которые решает система управления освещением

  1. Экономия электроэнергии. Мы уже не раз писали, что использование автоматизированных систем позволяет в разы экономить потребляемую электроэнергию освещения, в зависимости от того, где применяется система. Энергоэффективность в каждом случае рассчитывается индивидуально.
  2. Поддержание постоянного уровня освещенности при наличии присутствия в помещениях.
  3. Группы освещения в помещениях и на прилегающей территории объединены в единую систему. В случае использования масштабируемых решений это обеспечит взаимодействие и контроль всех процессов системы управления.
  4. Автоматическое или полуавтоматическое управление освещением, интеграция с общей системой автоматизации и диспетчеризации здания.
  5. Автоматическое управление по заранее запрограммированным параметрам.
  6. Система позволяет контролировать присутствие, измерять текущую освещенность, управлять временем, и многое другое.

Существуют локальные системы управления, с применением только датчиков движения, присутствия и освещенности. Датчики в свою очередь уже имеют все необходимые устройства в одном корпусе для автоматического управления освещением по вышеуказанным факторам. В этих решениях датчики могут управлять не только освещением, но и другими нагрузками, такими как кондиционеры, вентиляторы, и другими. Их включение и выключение не должны зависеть от текущей освещенности. Например, когда человек заходит в кабинет, освещенности достаточно и свет не включается, но кондиционер должен включиться. Локальные системы, не могут в полном объеме интегрироваться в общую систему диспетчеризации здания, поэтому существуют шинные системы управления освещением которые работают на разных протоколах, и с помощью специальных шлюзов свободно интегрируются в различные системы верхнего уровня.

Электронная система управления DALI

Название электронной системы управления — Digital Addressable Lighting Interface — подразумевает, что речь идет об электронном управлении системами освещения, позволяющем снижать интенсивность светового потока светильников в допустимом диапазоне.

Для установки этого стандартного цифрового протокола управления освещением используются двухжильные неполярные провода. Этот тип управления наружным освещением требует оснащения светильников электронными пускорегулирующими аппаратами с интерфейсом DALI. Двумя основными преимуществами такого способа управления являются возможность независимого диммирования и мониторинг осветительных установок. Диммирование может осуществляться в любом диапазоне, установленном для определенного типа ламп. Для газоразрядных ламп этот диапазон составляет 60—100 %, для светодиодов — 10—100 %, а для люминесцентных ламп — от 1 до 100 %. Мониторинг позволяет осуществлять оперативное управление светильниками, тем самым способствуя правильной работе всей осветительной системы. Кроме того, электронная система управления DALI позволяет объединять светильники в отдельные группы или осуществлять управление каждым из них по отдельности. Для управления системой DALI в зависимости от времени необходимо использовать регуляторы, обладающие этой функцией. Вызов световых сцен, перегруппировка и изменение функциональных характеристик не требуют никакого вмешательства в устройство светильников или проводки. Их, как правило, можно осуществлять из одного и того же места с помощью ПК. Для повышения зрительного комфорта и качества освещения используется плавное регулирование интенсивности освещения, практически незаметное для участников дорожного движения и пешеходов.of it.

Преимущества автоматизированной системы управления освещением

Самым оптимальным решением для эффективного управления освещением является использование полностью автоматизированных систем управления и диспетчеризации наружного освещения (АСУНО).

Почему же автоматизированная система эффективнее классических методов управления? Сердцем АСУНО явля­ется программируемый логический контроллер, который производит управление коммутацией отходящих линий по заранее заданной программе. В программе контроллера хранится годовое расписание, поэтому освещение включается всегда в нужное время. Данные об энергопотреблении и авариях передаются в диспетчерский центр, поэтому всегда доступна информация о состоянии питания на вводе в подстанцию и значение потребляемой мощности. По снижению текущего энергопотребления относительно нормы можно оценить количество перегоревших ламп. При превышении нормы энергопотребления идентифицируется нелегальное подключение к электросети. Вся диагностическая информация доступна в диспетчерском центре, участие объездной бригады не требуется. Таким образом, снижается аварийность за счет превентивного мониторинга и экономятся средства на обслуживание.

Рис. 1. Шкаф управления системой городского освещения во Владивостоке

ИТС «разрулит» в режиме нон-стоп

Таким образом, ИТС позволяет одновременно выполнять несколько задач – автоматически фиксирует нарушения правил дорожного движения, управляет светофорами, мониторит условия движения в реальном времени, а также информирует участников движения (о дорожных условиях и ситуациях, графиках движения общественного транспорта, наличии свободных мест на парковках и т.д.).

Управляет всем этим центральное звено ИТС – Ситуационный центр ЦОДД. «Умный» город в режиме нон-стоп в огромном объеме производит данные. В общей сложности каждый день в ЦОДД поступает более 350 млн пакетов данных – информация с детекторов транспорта, комплексов фотовидеофиксации, треков бортового оборудования подвижного состава, а также данные общественного транспорта и видеокамеры. Серверы ИТС обрабатывают информацию и контролируют работу более 10 тыс. единиц общественного транспорта. Также система следит за примерно 120 тыс. автомобилей такси и машинами каршеринга – больше 17,5 тыс. транспортных средств. 

Комбинированные системы освещения

Комбинированные системы освещения являются местными и равномерными. Ее устанавливают в тех местах, где выполняются точные зрительные работы, кабинетах, в мастерских и прочих схожих помещениях.

Стоит помнить и знать, что затраты на освещение составляют порядка 30 процентов от всех расходов за электроэнергию. Во многих случаях свет горит постоянно, исполняя роль дежурного освещения. Это автоматически приводит к увеличению расходов за электричество, а также к быстрому износу осветительных приборов.

READ  Выбор уставок апв линий с односторонним питанием

Если светильники подобраны и установлены не правильно, то они могут оказать отрицательное влияние на здоровье человека, его работоспособность и даже настроение.

Компактность и простор

Для организации более легкого пространства зон отдыха освещение стали чаще встраивать в напольное покрытие, лестницы или элементы ограждений. И место, которое обычно занимают фонари, можно отдать под другие малые архитектурные формы или же просто оставить открытым.

Такого плана подсветка работает на набережной парка «Музеон»: когда темнеет, здесь зажигаются светильники, встроенные в покрытие прогулочных дорожек и газоны. Это экономит место и позволяет не перегружать пространство.

Лаконичностью отличается и освещение в новом ландшафтном парке ВДНХ. Например, зону «Природа развлечений» не стали занимать фонарными столбами. Подсветку разместили на многоуровневых помостах и мини-пирсах набережной каскадных прудов, встроили в ступени и перила мостиков. Получилась оригинальная, легкая и действительно светлая зона отдыха даже для поздних прогулок. Еще один пример такой подсветки на ВДНХ — новая воздушная экотропа в зоне «Природа дикая». В перила конструкции встроили маленькие, но яркие светильники. Это обеспечивает прогулочной зоне самостоятельное освещение без тяжеловесных фонарных опор.

Шкаф управления

Шкаф управления наружным освещением (ШУНО) — центральное звено системы, где сосредоточены все схемы, распределяющие нагрузки и контролирующие процесс освещения. Через шкаф осуществляется защита фотореле от замыкания и перепадов напряжения.

На схеме показана работа ящика управления, где 1 — электросчетчик, 2 — замок, 3 — защитный барьер, 4 — шкаф.

Главная задача шкафа — контроль за срабатыванием реле исходя из времени суток, управление с помощью пульта и регулировка яркости свечения после подключения реле.

Шкафы функционируют в таких управленческих режимах:

  1. Местное управление (обычный таймер, астротаймер или иное определяющее устройство).
  2. Каскадная система управления напряжением 220 В/50 Гц. Управление осуществляется по особому сигнальному проводнику от другого шкафа или пульта.
  3. Местное управление.

Подбор режимов производится при участии имеющихся органов управления. В шкафах есть раздельный контроль ночного освещения (три однофазных линии) и дополнительное ночное освещение (три однофазных линии в электрощитах на 100 А и шесть в щитах на 250 А). Шкафы оснащаются внутренней подсветкой при помощи лампочки накаливания на 40 – 60 Вт.

Если позволяют финансовые возможности проложить кабель к каждому уличному светильнику с реле, один из шкафов размещают внутри здания, а второй — на въезде в участок. Однако щиты будут работать одновременно, в результате чего каждый блок станет потреблять электроэнергию как полноценный кабельный канал.

Рекомендуется такая схема: первый шкаф размещают у ворот, подключив к его контроллеру светильники с датчиками движения и фотореле. Второй шкаф устанавливается внутри дома. С него будет осуществляться дистанционный контроль (с помощью пульта).

Оптимальной будет следующая система: первый шкаф устанавливают у ворот, и подключают на его контроллер фонари с датчиками движения с фотореле, стоящие вдоль дорожки. Второй шкаф ставится непосредственно внутри помещения — отсюда будет вестись дистанционное управление. Схема простая: к каналу, который идет в блок контроля, подключены определенные светильники, а с пульта подается сигнал. Щит позволяет передавать команды для автоматического отключения тока по периметру участка.

Методы управления уличным освещением

На практике используется три способа управления светом: ручное, дистанционное и автоматическое.

Ручное управление

Включение и выключение уличных светильников осуществляется в ручном режиме. Каждый источник света или их группа управляется оператором непосредственно на месте.

Этот способ самый древний. Издавна фонарщики подходили к каждому фонарю (газовому или масляному) и зажигали столб, а позднее — гасили. Даже сегодня во дворах частных домов используется ручное управление наружным светом. Однако в коммунальных службах управлять светом в ручном режиме невозможно из-за масштабов работы, поэтому такой способ используется только в экстренных случаях (например, при выполнении ремонта).

Удаленный контроль

С течением времени технологии развивались — вместо фонарщиков управлять освещением стали служащие энергораспределительных сетей. Делали работники служб это дистанционно, включая или выключая рубильник. В результате действий напряжение подается в сеть или, наоборот, прекращается.

Автоматическое управление

Управление с помощью автоматики — наиболее продвинутый способ управления светом. Включение и выключение света осуществляется за счет использования датчиков, действующих по определенному алгоритму. В результате система освещения работает без непосредственного участия человека.

Переход на автоматическое управление вызван изменением технологического процесса. Напряжение к потребителям поступает при участии локально расположенных трансформаторных станций. На этих объектах происходит преобразование высоковольтного напряжения в напряжение нужной величины.

Существует два обстоятельства, диктующих переход на автоматическое управление:

  1. Чаще всего строить отдельные подстанции для уличного освещения экономические невыгодно. Нынешние трансформаторы преобразуют напряжение для всех потребителей электричества на заданной территории.
  2. Для централизованного контроля за включением и отключением светильников понадобилось бы подтягивать к каждой подстанции отдельный кабель, что только повысит и без того большие расходы.

В связи с этим начался массовый переход на автоматические системы. В самом начале развития технологии принцип управления был прост: на подстанциях монтировались приборы, контактирующие с датчиками освещенности.

Со временем стали видны изъяны такого подхода:

  • некорректное срабатывание при неверной калибровке;
  • фонари часто гасли в темное время из-за света фар от проезжающих машин или даже от лунного света;
  • если датчик покрывался снегом, грязью или льдом, происходило ложное срабатывание светильника;
  • датчики нередко выходили из строя.

Еще один недостаток датчиков освещенности — линейность технологии. Свет не обязательно нужен даже в темное время суток, если на территории отсутствуют движущиеся объекты.

Чтобы как-то оптимизировать технологию, датчики стали объединять с временными реле. В результате таймер включал и выключал светильники в определенное время. Например, освещение работало с 10 часов вечера до четырех часов утра.

Позднее появились астрономические реле. В таких устройствах программа по определенному алгоритму рассчитывает время заката и рассвета. На основании расчета происходит управление освещением.

Датчики освещенности по-прежнему используются. Приборы актуальны для управления светом при неожиданном снижении естественной освещенности (например, туман).

На сегодняшний день наиболее популярны автоматические системы на основе цифровых технологий, где сочетаются автоматика и ручное управление.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: