Феррорезонансные явления в электрических сетях

Советы по выбору

Конструкция выпрямителей постоянно модернизируется, повышается качество их схем, что позволяет переносить значительные феррорезонансные перенапряжения. Современные модели выделяются высоким уровнем быстродействия, точностью настройки и длительным эксплуатационным сроком. Режимы устанавливаются мощностными характеристиками прибора и его типом.

Основное условие выбора феррорезонансного стабилизатора – место его подсоединения. Обычно его устанавливают на входе электросети в помещение либо вблизи бытовой техники. Если выпрямитель устанавливается для всей техники, необходимо выбирать устройства с высоким уровнем мощности и подключать их сразу же за распределительным щитком.

Феррорезонансные явления в электрических сетях

Основные факторы, которые порождают феррорезонансные явления в электрических сетях – это элементы ёмкостного и индуктивного типа. Они способны формировать колебательные контуры в периоды переключения. Этот эффект особо заметен в трансформаторах силового типа, линейного вольтодобавочного, шунтирующих контурах и в аналогичных устройствах, которые оборудуются массивной обмоткой.

Данное явление бывает 2 типов: резонанс токов и напряжения.

Феррорезонанс напряжений возможен, когда в сети имеется индуктивность, характеризующаяся нелинейным вольт-амперным свойством. Данная характеристика свойственна катушкам индуктивности, где сердечники производятся из ферромагнитных компонентов. Особенно это касается выпрямителей линейки НКФ. Такое негативное явление обуславливается небольшим показателем сопротивлений омического и индуктивного типов по отношению к силовым трансформаторам.

Феррорезонанс и способы защиты от него

Феррорезонансный контур в сети с изолированной нейтралью — это контур нулевой последовательности с нелинейной характеристикой намагничивания. Трехфазный заземляемый трансформатор напряжения, по конструктиву, это три однофазных трансформатора, соединенные по схеме звезда/звезда, с обособленной магнитной системой. При перенапряжениях в сети индукция в магнитопроводе увеличивается, как минимум в 1,73 раза. В таких режимах возможно насыщение магнитопровода и, как следствие, возникновение феррорезонанса в сети. По данным служб энергоснабжения, ежегодно в эксплуатации повреждается 7–9% трансформаторов напряжения по причине феррорезонанса.

Существует множество способов защиты ТН от резонансных явлений в сети:

  • изготовление ТН с максимально уменьшенной рабочей индукцией;
  • включение в цепь ВН и НН дополнительных демпфирующих сопротивлений;
  • изготовление трехфазных трансформаторов напряжения с единой магнитной системой в пятистержневом исполнении;
  • применение специальных устройств, включаемых в цепь разомкнутого треугольника;
  • заземление нейтрали трехфазного трансформатора напряжения через токоограничивающий реактор;
  • применение специальных компенсационных обмоток и т.д.;
  • применение специальных релейных схем, для защиты обмотки ВН от сверхтоков.

Все эти меры в той или иной степени защищают измерительный трансформатор напряжения, но не решают проблему в корне.

Феррорезонансные стабилизаторы

Феррезонансный стабилизатор

Феррорезонансные выпрямители не оборудуются встроенным вольтметром, вследствие чего сложно замерять выходной показатель напряжения сети. Отрегулировать величину напряжения собственноручно не получится. Стабилизаторы феррорезонансного типа частично искажают реальные показания, величина погрешности составляет до 12%.

Тем, кто долго пользуется такими устройствами, необходимо помнить, что они способны излучать магнитное поле, которое может нарушить правильное функционирование бытовой электротехники. Стабилизаторы такого класса настраиваются в заводских условиях, никаких дополнительных настроек в быту они не требуют.

Механизм возникновения явления

Вольтамперная характеристика (ВАХ)

ТН содержат катушки индуктивности с сердечниками из ферромагнитных материалов, имеющими нелинейную вольтамперную характеристику (ВАХ). На линейной ВАХ каждому значению напряжения Ui соответствует единственное значение тока Ii. На нелинейной ВАХ для определенного (резонансного) Uр реализуется режим с двумя различными величинами тока — I1 и I2.

Резонансный переход

При значении Uр на обмотках ТН сопротивление резко падает. Происходит мгновенный переход от I1 к I2, приводящий к «опрокидывание фазы» приложенного Uр, характер которого изменяется с активно-индуктивного на активно-емкостной.

Длительные колебания, вызванные резкими переходами тока в первичных обмотках ТН, вызывают тепловой пробой изоляции.

Практическое значение

Феррорезонанс может возникать в электрических сетях как вредное явление, приводящее к серьёзным повреждениям оборудования. Наиболее вреден режим с периодом системы; характерны также субгармонические режимы на 1/3 и 1/5 частоты, с меньшими действующими токами. Значительное количество аварий в энергосистемах с неустановленными причинами объясняется феррорезонансом.

READ  Подключение датчиков температуры

Может быть инициирован в результате подключений, отключений, переходных процессов, грозовых перенапряжений, то есть при смене режима работы сети, при авариях, либо в результате внешнего воздействия. Работа сети в режиме феррорезонанса может долгое время оставаться незамеченной.

При феррорезонансе нередко повреждаются электромагнитные трансформаторы напряжения, из-за чрезмерного тока и перегрева. Технические меры по предотвращению аварий заключаются в основном во временном или постоянном увеличении активных потерь в резонансном контуре. Тем самым удается прекратить феррорезонанс или не допустить его возникновения. Намеренное увеличение потерь, в частности, может достигаться выбором конструкции трансформатора, когда магнитопровод частично выполняется из толстолистовой конструкционной стали.

Принцип действия феррорезонансных стабилизаторов

Обмотка первичного типа, на которую поступает входное напряжение, находится на магнитопроводе. Он обладает большим поперечным сечением, что позволяет держать сердечник в ненасыщенном состоянии. На входе напряжение формирует магнитные потоки.

На зажимах обмотки вторичного типа формируется выходное напряжение. К этой обмотке подсоединяется нагрузка, которая находится на сердечнике, обладает небольшим сечением и пребывает в насыщенном состоянии. При аномалиях сетевого напряжения и магнитного потока его значение фактически не модифицируется, а также неизменным остаётся показатель ЭДС. Во время увеличения магнитного потока некоторая его доля будет замкнута на магнитном шунте.

Магнитный поток принимает синусоидальную форму и при его подходе к амплитудному показателю отдельный его участок переходит в режим насыщения. Повышение магнитного потока при этом прекращается. Замыкание потока по магнитному шунту будет осуществляться лишь тогда, когда показатель магнитного потока сравнится с амплитудным.

Наличие конденсатора позволяет феррорезонансному стабилизатору работать с увеличенным мощностным коэффициентом. Показатель стабилизации зависит от уровня наклона кривой горизонтального типа по отношению к абсциссе. Наклон данного участка значительный, поэтому обрести высокий уровень стабилизации без вспомогательного оборудования невозможно.

Феррорезонанс — ток

Феррорезонанс токов может наблюдаться при параллельном соединении катушки с магнитопроводом и конденсатора при питании цепи от источника синусоидального напряжения. Анализ феррорезонанса токов аналогичен анализу феррорезонанса напряжений.

Возникновение феррорезонанса токов наступает при определенном значении тока, причем нагрузка блока увеличивает ток наступления феррорезонанса.

Принципиальная электрическая схема стабилизатора с синусоидальным выходным напряжением.

В стабилизаторах с феррорезонансом токов для фильтров обычно используется основная емкость стабилизатора.

У ФСН с феррорезонансом токов устранение дестабилизирующего влияния изменения частоты входного напряжения в пределах / ( 0 97 ч — 1 02) fHOM возможно за счет применения компенсационных обмоток, расположенных на линейном дросселе стабилизатора. У ФСН с феррорезонансом напряжений для устранения дестабилизирующего влияния изменения частоты необходимы специальные схемы.

Относительная величина третьей, пятой и седьмой гармоник в кривых намагничивающего тока нелинейного дросселя и выходного напряжения стабилизатора i ft ti t — для / o5 / / i. s — для.

Преимущества стабилизаторов с феррорезонансом токов раскрыты и доказаны, поэтому ниже рассматриваются ФСН только этой группы. Полученные аналитические и графические выражения характеристик таких ФСН весьма близки к действительным, но не учитывают высших гармоник тока и напряжения, всегда имеющих место в реальном стабилизаторе. Эти зависимости примерно одинаковы для широкого класса рассматриваемых ФСН и поэтому в известной мере их можно считать типичными.

Различают феррорезонанс напряжений и феррорезонанс токов.

Феррорезонанс напряжений.
READ  Приказ министерства энергетики рф от 23 июня 2015 г. n 380 "о порядке расчета значений соотношения потребления активной и реактивной мощности для отдельных энергопринимающих устройств (групп энергопринимающих устройств) потребителей электрической энергии"

Различают феррорезонанс напряжений в феррорезонанс токов.

Указанные свойства стабилизаторов с феррорезонансом токов имеют важное значение, особенно для полупроводниковых преобразователей.

Стабилизаторы, основанные на феррорезонансе токов, строятся на различные мощности — от десятков вольт-ампер до нескольких киловольт-ампер.

Схемы автоматического пуска стабилизаторов с феррорезонансом напряжений.

В отличие от стабилизаторов с феррорезонансом токов в рассматриваемых стабилизаторах вступление в рабочий режим и выход из него всегда происходят скачкообразно. При плавном изменении входного напряжения ( а также нагрузки, частоты или параметров схемы) переход в рабочий ( квазистационарный) режим может произойти при условии Ubm Us, так как только в этом случае на протяжении каждого полупериода питающего напряжения дроссель насыщается и через него может осуществиться разряд емкости.

Так же как в стабилизаторах с феррорезонансом токов, в рассматриваемых стабилизаторах для сердечника дросселя L могут быть использованы горячекатаные электротехнические стали. В этом случае применение схем компенсации по рис. 1 — 2 позволяет добиться приемлемого для многих практических целей качества стабилизации. Поэтому в рассматриваемом случае для анализа и расчета стабилизаторов целесообразно пользоваться методом эквивалентных синусоид.

Явление — феррорезонанс

Явление феррорезонанса подробно рассматривается во всех курсах теоретических основ электротехники. Анализ их проводится методом эквивалентных синусоид, и поэтому полученные результаты достаточно близко совпадают с результатами опыта только при значениях индукции в магнитопроводе нелинейных индуктивных элементов несколько выше колена характеристики намагничивания. При таких условиях содержание высших гармонических в токах и напряжениях относительно невелико и неучет их не приводит к существенным погрешностям расчета.

Вольтамперные характеристики последовательного феррорезонансного контура.

Явление феррорезонанса широко используется в технике. Оно позволяет создать бесконтактные реле, которые, в отличие от рассмотренных выше, не нуждаются ни в обмотках обратной связи, ни и выпрямителях.

Чем отличается явление феррорезонанса от явления резонанса в линейных цепях.

Феррорезонанс напряжений.

При анализе явления феррорезонанса в целях упрощения пользуются эквивалентными синусоидами напряжения и тока в катушке.

Для пояснения явления феррорезонанса напряжений будем пренебрегать всеми видами потерь энергии в цени, а также высшими гармониками напряжений и тока.

Схема включения параллельного стабилизатора.| Упрощенная электрическая схема замещения генератора при наличии параллельного стабилизатора.

Работа схемы основана на явлении феррорезонанса.

Это явление также относится к явлению феррорезонанса, причем в рассматриваемом случае мы имеем дело с феррорезонансом в параллельной цепи.

Для создания бесконтактных реле используется также явление феррорезонанса. В схемах ферроре-зонансных реле нет обмоток обратной связи и выпрямителей, поэтому они более надежны, особенно на высоких частотах ( несколько мегагерц), а их быстродействие позволяет делать сотни тысяч переключений в секунду.

Феррорезонансный стабилизатор напряжения.

Феррорезонансные стабилизаторы могут быть основаны на явлениях феррорезонанса напряжений и токов.

При работе трансформатора ТН на холостом ходу возникают явления феррорезонанса, характеризующиеся скачкообразными изменениями тока. Это приводит к резким повышениям напряжения и искажению формы кривой вторичного напряжения ( на зажимах а — х и ад — хя), которая в этом случае существенно отличается от синусоиды.

При этом в цепях фильтра тока обратной последовательности отсутствуют явления феррорезонанса.

Незаземляемые ТН

Для решения всех вопросов, связанных с эксплуатацией заземляемых трансформаторов напряжения в сетях с изолированной нейтралью, на нашем предприятии разработана новая трехфазная группа. Трехфазная 3хНОЛ.08-6(10)М группа, состоящая из трех незаземляемых трансформаторов, соединенных по схеме треугольник/треугольник. Основное преимущество 3хНОЛ.08-6(10)М — отсутствие заземляемого вывода с ослабленной изоляцией. Это значит, что трансформатор не подвержен влиянию феррорезонанса и не требует дополнительных защит от его воздействия. Также изоляцию этого трансформатора возможно испытать приложенным одноминутным напряжением промышленной частоты в условиях эксплуатации, так как в этом случае нет необходимости в источнике повышенной частоты.

READ  Плк110 программируемый логический контроллер

Трансформатор напряжения НОЛ.08-6(10)М

У незаземляемых трансформаторов нет высоковольтных выводов с ослабленной изоляцией, что так-же позволит избежать нарушений, которые зачастую случаются в эксплуатации, при определении сопротивления изоляции вывода «Х», так как есть разночтения в нормативной документации. На сегодняшний день большое количество пунктов коммерческого учета (ПКУ) имеют в своем составе заземляемые трансформаторы напряжения со встроенными предохранителями (ЗНОЛП). При однофазных замыканиях на землю, а они как указывалось выше, случаются достаточно часто в воздушных распределительных сетях, срабатывает встроенное защитное предохранительное устройство (ЗПУ). Встраиваемое ЗПУ, прежде всего, предназначено для защиты трансформатора напряжения от коротких замыканий во вторичных цепях.

Так как ток срабатывания предохранителя достаточно мал, то при различных перенапряжениях, вызванных, в том числе, и однофазными замыканиями на землю, — происходит отключение ТН. ЗПУ защищает обмотку ВН от сверхтоков, которые возможны при различных технологических нарушениях в электрических сетях. При срабатывании предохранителя учет электроэнергии будет отсутствовать. Для восстановления учета, необходимо заменить плавкую вставку ЗПУ.

Условия возникновения

В нормальных режимах работы трёхфазной сети феррорезонанс маловероятен, так как ёмкости конструкционных элементов оказываются зашунтированными индуктивным сопротивлением входной питающей сети.

Нормальный режим является симметричным. Наиболее распространенная на практике причина феррорезонанса — незаземленная (изолированная) нейтраль в сочетании с неполнофазным режимом. При изолированной нейтрали ёмкость сети относительно земли
соединяется последовательно с обмотками силового
трансформатора или электромагнитного трансформатора напряжения, что создает благоприятное условие для феррорезонанса. Неполнофазный режим может возникать при неполнофазном включении, при разрыве одной фазы или при несимметричном коротком замыкании.

Какие трансформаторы нейтрализуют эффект феррорезонанса

Для предотвращения скачкообразных токовых перегрузок защитные ТН исполняются совместно с трансформаторами нулевой последовательности (ТНП). Такие специализированные устройства называются антирезонансными.

НАМИТ-10-2

Оборудование относится к типу ТН (Н), А — антирезонансный (А), с естественным масляным охлаждением (М), для измерительных цепей (И), трехфазный (Т), номинальным напряжением 10 кв, вариант исполнения— 2.

Измерительное оборудование состоит из двух единиц, размещенных в общем корпусе:

  • ТНКИ — это трехобмоточный ТН контроля изоляции;
  • ТНП — это двухобмоточный ТНП, выполняющий защиту ТНКИ от аварий при замыканиях отдельных фаз. Фоторезонанс компенсируется индуктивным сопротивлением ТНП в первичной цепи преобразователя.

НАМИ-10-95

Антирезонансное, масляное, измерительное оборудование состоит из:

  • трехфазного трехстержневого ТН прямой (обратной) последовательности с дополнительной вторичной обмоткой;
  • однофазного двухстержневого ТНП со вторичной обмоткой, соединенной по схеме замкнутого треугольника, снижающей сопротивление нулевой последовательности устройства до величины сопротивления рассеяния.

НАЛИ-СЭЩ-6(10)

Оборудование НАЛИ-СЭЩ -6(10) представлено литой (Л) трехфазной антирезонансной группой измерителей номинальным напряжением 6(10)кв.

НАЛИ-СЭЩ-6(10) исполнен посредством четырех активных элементов:

  • блока из трех однофазных, двухполюсных, измерительных ТН НОЛ-СЭЩ, каждый из которых содержит до трех вторичных обмоток;
  • одного ТНП-СЭЩ, выполняющего функцию защиты НОЛ-СЭЩ от скачкообразных токовых переходов.

НАЛИ-СЭЩ-1

Оборудование выполнено из однофазных ТН с литой изоляцией типа НОЛ-6(10) и ТНП на основе принципа действия и релейной схемы устройства НАМИТ-10-2.

НАЛИ-СЭЩ-2

Данный тип повторяет НАЛИ-СЭЩ-1 при исключении дополнительной вторичной обмотки, соединенной по схеме открытого треугольника, а также при исключении релейной схемы дешунтирования постоянно включенного ТНП. Явление фоторезонанса в трансформаторе напряжения НАЛИ-СЭЩ-2 не возникает при работе с пониженной рабочей индукцией. Защитная конструкция обеспечивает практически линейную ВАХ.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: