Что такое терморезистор, где применяется? как проверить на работоспособность?

Конструкция и разновидности терморезисторов

Термисторы с аксиальными выводами

SMD-термисторы

Резистивный элемент терморезистора изготавливают методом порошковой металлургии из оксидов, галогенидов, халькогенидов некоторых металлов, в различном конструктивном исполнении, например в виде стержней, трубок, дисков, шайб, бусинок, тонких пластинок, и размерами от 1—10 микрометров до нескольких сантиметров.

По типу зависимости сопротивления от температуры различают терморезисторы с отрицательным (NTC-термисторы, от слов «Negative Temperature Coefficient») и положительным (PTC-термисторы, от слов «Positive Temperature Coefficient» или позисторы) температурным коэффициентом сопротивления (или ТКС). Для позисторов — с ростом температуры растёт их сопротивление; для NTC-термисторов увеличение температуры приводит к падению их сопротивления.

Терморезисторы с отрицательным ТКС (NTC-термисторы) изготовляют из смеси поликристаллических оксидов переходных металлов (например, MnO, СoOx, NiO и CuO), полупроводников типа AIII BV, стеклообразных, легированных полупроводников (Ge и Si), и других материалов. PTC-термисторы изготовляют из твёрдых растворов на основе BaTiO3, что даёт положительный ТКС.

Условно терморезисторы классифицируют как низкотемпературные (предназначенные для работы при температуpax ниже 170 К), среднетемпературные (от 170 до 510 К) и высокотемпературные (выше 570 К). Выпускаются терморезисторы, предназначенные для работы при температурах от 900 до 1300 К.

Терморезисторы способны работать в различных климатических условиях и при значительных механических нагрузках. Однако, с течением времени, при жёстких условиях его эксплуатации, например, термоциклировании, происходит изменение его исходных термоэлектрических характеристик, таких как:

  • номинального (при 25 °C) электрического сопротивления;
  • температурного коэффициента сопротивления.

Также существуют комбинированные приборы, такие как терморезисторы с косвенным нагревом. В этих приборах в одном корпусе совмещены терморезистор и гальванически развязанный от него нагревательный элемент, задающий температуру терморезистора, и, соответственно, его электросопротивление. Такие приборы могут использоваться в качестве переменного резистора, управляемого напряжением, приложенным к нагревательному элементу такого комбинированного прибора.

Температура рассчитывается по уравнению Стейнхарта — Харта:

1T=A+Bln⁡(R)+Cln⁡(R)3{\displaystyle {1 \over T}=A+B\ln(R)+C^{3}}

где T — температура, К;
R — сопротивление, Ом;
A,B,C — константы термистора, определённые при градуировке в трёх температурных точках, отстоящих друг от друга не менее, чем на 10 °С.

Одним из существенных недостатков «бусинковых» термисторов, как температурных датчиков, является то, что они не взаимозаменяемы и требуют индивидуальной градуировки. Не существует стандартов, регламентирующих их номинальную характеристику сопротивление — температура. «Дисковые» термисторы могут быть взаимозаменяемыми, однако при этом лучшая допускаемая погрешность не менее 0,05 °С в диапазоне от 0 до 70 °С. Типичный 10-килоомный термистор в диапазоне 0—100 °С имеет коэффициенты, близкие к следующим значениям:

A=1,03∗10−3{\displaystyle A=1,03*10^{-3}};
B=2,93∗10−4{\displaystyle B=2,93*10^{-4}};
C=1,57∗10−7{\displaystyle C=1,57*10^{-7}}.

Технические характеристики

Каждое устройство обладает набором параметров, на которые нужно обращать внимание при выборе:

  1. Номинальное сопротивление. Это значение, полученное при фиксированной температуре (стандарт – 20 градусов).
  2. ТКС – обратимое изменение сопротивления на каждый градус.
  3. Максимальная мощность рассеяния. Иногда называют просто мощностью резистора. Показывает предельное значение, которое рассеивает ТР без необратимых последствий. Показатель актуален только в условиях соблюдения температурного режима.
  4. Температурная чувствительность. Определяется в определенном диапазоне и зависит от свойств полупроводникового материала.

Эти значения нужно учитывать для приборов с отрицательным температурным коэффициентом сопротивления.

Отрицательный коэффициент ТКС

Дело в том, что зависимость сопротивления от температуры у термисторов экспоненциальная. При этом номинальное сопротивление отдельного ТР может изменяться в больших пределах. Расчеты параметров полупроводниковых приборов сложнее – у позисторов принцип работы основан на линейной зависимости.

Вычисление температуры

Термисторы обладают высокой степенью нелинейности параметров, и термисторы различных моделей, даже при одинаковых значениях параметра B25/100 могут по разному изменять сопротивление в зависимости от температуры. Поэтому формула может лишь приблизительно оценить температуру. Кроме того, такая формула подразумевает сложные вычисления, которые требуют много процессорного времени, что часто является неприемлемым. Более простым и эффективным подходом является хранение таблицы, в которую заносятся предварительно рассчитанные значения, возвращаемые АЦП при тех, или иных температурах. Для экономии памяти можно хранить значения только для некоторых точек, искать их в таблице двоичным поиском, а промежуточные значения получать линейной интерполяцией. Для измерений температуры окружающего воздуха с точностью до 0.3°C, достаточно хранить значения с шагом 5°C. Если значения лежат в пределах 16 бит (и занимают 2 байта), то для хранения такой таблицы для диапазона измеряемых температур от -30 до 70 градусов потребуется всего 40 байт. Точность измерений можно повысить, уменьшив шаг таблицы. Так при шаге 2°C можно добиться точности до 0.1°C на широком диапазоне измерений.

Производители термисторов, как правило, приводят таблицы показывающие изменение сопротивления в зависимости от температур. Значения в этих таблицах также привязаны к сетке температур с некоторым шагом (например, 5°C). Используя формулы и можно с достаточной точностью интерполировать табличные значения.

Общий принцип действия

Терморезисторы делаются максимально чувствительными к изменению температурного режима, ведь на этом принципе они и работают. При отсутствии нагрева атомы, входящие в состав детали, находятся в правильном порядке и формируют длинные ряды.

В случае нагрева количество активных «переносчиков» заряда растет. Чем больше таких единиц, тем выше проводимость материала.

При изучении кривой зависимости сопротивления от температуры можно увидеть характеристику нелинейного типа. При этом лучшие характеристики терморезистор показывает в диапазоне от -90 до +130 градусов.

Важно учесть, что принцип действия таких деталей строится на корреляции между температурным режимом и металлами в составе детали. Сам терморезистор изготавливается с применением полупроводниковых составов (оксидов, марганца, меди, никеля, силикатов, железа и других)

Такие компоненты способны реагировать на малейшее изменение в температуре

Сам терморезистор изготавливается с применением полупроводниковых составов (оксидов, марганца, меди, никеля, силикатов, железа и других). Такие компоненты способны реагировать на малейшее изменение в температуре.

Создаваемое электрическое поле подталкивает электрон, который перемещается до момента удара об атом. По этой причине движение электрона затормаживается.

При росте температуры атомы двигаются активнее. При таких обстоятельствах исходный актом быстрее столкнется с другим элементом. В результате возникает дополнительное сопротивление.

READ  Гост 2.770-68 ескд. обозначения условные графические в схемах. элементы кинематики

После снижения рабочей температуры электроны «падают» в нижние валентные уровни и переходят в невозбужденное состояние. Иными словами, они меньше перемещаются и не создают такого сопротивления.

В случае повышения температуры растет и показатель R. Но здесь нужно учесть тип терморезистора, от которого зависит принцип повышения и роста сопротивления при изменении температурного режима.

Описание прибора

Датчики температуры широко используются в электротехнике. Почти во всех механизмах применяются аналоговые и цифровые микросхемы термометров, термопары, резистивные датчики и термисторы. Приставка в названии прибора говорит о том, что термистор — это такое устройство, которое зависит от влияния температуры. Количество тепла в окружающей среде — главенствующий показатель в его работе. Благодаря нагреванию или охлаждению, меняются параметры элемента, появляется сигнал, доступный для передачи на механизмы контроля или измерения.

Термистор — это прибор электроники, у которого значения температуры и сопротивления связаны обратной пропорциональностью.

Существуют и другое его название — терморезистор. Но это не вполне правильно, так как на самом деле термистор является одним из подвидов терморезистора. Изменение теплоты может влиять на сопротивление резистивного элемента двумя способами: либо увеличивая его, либо уменьшая.

Поэтому термосопротивления по температурному коэффициенту подразделяются на РТС (положительные) и NTC (отрицательные). РТС — резисторы получили название позисторов, а NTC — термисторов.

Отличие РТС и NTC приборов состоит в изменении их свойств при воздействии климатических условий. Сопротивление позисторов прямо пропорционально количеству тепла в окружающей среде. При нагреве NTC — приборов его значение уменьшается.

Вид терморезистора на электрических принципиальных схемах похож на обыкновенный резистор. Отличительной чертой является прямая под наклоном, которая перечёркивает элемент. Тем самым показывая, что сопротивление не постоянно, а может изменяться в зависимости от увеличения или уменьшения температуры в окружающей среде.

Основное вещество для создания позисторов — титанат бария. Технология изготовления NTC — приборов более сложная из-за смешивания различных веществ: полупроводников с примесями и стеклообразных оксидов переходных металлов.

Область применения

Использование устройств зависит от их стоимости и точности измерений. Более дорогие позисторы применяют в сложных производствах, а также в качестве предохранителей. Например, их подключают к исполнительному реле, в случае нагрева схема отключается. Термисторы гораздо доступнее, что позволяет находить им широкое применение в быту.

Термодатчик воздуха

При правильной калибровке NTC резистор может использоваться для проверки нагрева окружающей воздушной среды. В этом случае точность измерений, как на производстве, не требуется – достаточно регулировки с шагом в 1 градус Цельсия.

Самодельный датчик температуры воздуха

Автомобильный термодатчик

Популярный способ применения – защита двигателя авто от перегрева. ТР соединяют с реле, которое отключает двигатель при угрозе перегрева. При достаточных знаниях можно подключить устройство к бортовому компьютеру для отображения температуры на дисплее.

Датчик пожара

Из терморезистора и биметаллических элементов пускателя можно создать конструкцию, аналогичную пожарной сигнализации. Для этого подойдут простые бусинковые ТР. Также датчик может работать, если нужно исключить срабатывания на дым, например, сигаретный.

Термистор как регулятор пускового тока

Есть ряд приборов, которые подвержены чрезмерным токам при первом запуске: лампы, двигатели и трансформаторы. Для их ограничения в цепь встраивается термистор. Вместо резких скачков осуществляется регулировка тока по нагрузке, по мере нагревания термистора и уменьшения сопротивления.

Стабильность

Причины нестабильности термисторов следующие:

  • напряжения, возникающие в материале при термоциклировании и образование микротрещин;
  • структурные изменения в полупроводнике;
  • внешнее загрязнение (водой и др. веществами) и в результате химические реакции в порах и на поверхности полупроводника;
  • нарушение адгезии металлической пленки;
  • миграция примесей из металлических контактов в материал термистора.

Для получения стабильного состояния термисторы подвергают старению (до 500-700 дней). Как правило, во время старения наблюдается рост сопротивления. При длительном использовании термисторов, они уходят за пределы допуска, в большинстве случаев, термисторный термометр показывает температуру несколько ниже, чем значение, определенное по номинальной характеристике. Исследования показывают, что бусинковые термисторы могут проявлять очень высокую стабильность (дрейф до 3 мК за 100 дней при 60 С).

Дисковые термисторы менее стабильны (дрейф до 50 мК за 100 дней при 60 С).  Термисторы представляют особый интерес для измерения низких температур благодаря своей относительной нечувствительности к магнитным полям. Некоторые типы термисторов могут применяться до температуры минус 100 С. Диапазон наилучшей стабильности термисторов – от 0 до 100 С. Основными преимуществами термисторов являются вибропрочность, малый размер, малая инерционность и невысокая цена.

Конструкция и материалы

Большим преимуществом термисторов является разнообразие форм и миниатюрность. Основные конструктивные типы: бусинковые (0,1-1 мм), дисковые (2,5-18 мм), цилиндрические (3-40 мм), пленочное покрытие (толщина 0,2-1 мм). Выпускаются бусинковые термисторы диаметром до 0,07 мм с выводами толщиной 0,01 мм. Такие миниатюрные датчики позволяют измерять температуру внутри кровеносных сосудов или растительных клеток. Большинство термисторов – керамические полупроводники, изготовленные из гранулированных оксидов и нитридов металлов путем формирования сложной многофазной структуры с последующим спеканием (синтерация) на воздухе при 1100-1300 С.

Сложные двойные и тройные структуры оксидов переходных металлов, такие как (AB)3O4, (ABC)3O4 лежат в основе термисторов. Распространенной формулой является (Ni0.2Mn0.8)3O4. Наиболее стабильными термисторами при температурах ниже 250 С являются термисторы на основе смешанных оксидов мания и никеля или магния, никеля и кобальта, имеющие отрицательный ТКС. Удельная проводимость термистора r (25 C) зависит от химического состава и степени окисления. Дополнительное управление проводимостью осуществляется добавлением очень малых концентраций таких металлов как Li и Na.

Устройство терморезистора.

При изготовлении бусинковых термисторов бусинки наносятся на две параллельные платиновые проволоки при температуре 1100 С, проволоки разрезаются на куски для получения необходимой конфигурации выводов. На бусинки наносится стеклянное покрытие, спекаемое при 300 С, либо бусинки герметизируются внутри миниатюрных стеклянных трубок.

READ  §2.5. пуск, реверсирование и торможение асинхронных двигателей

Для получения металлических контактов в дисковых термисторах, на диск наносится металлическое покрытие Pt-Pd-Ag и выводные проводники соединяются с покрытием пайкой или прессованием. Номинальное сопротивление термисторов значительно выше, чем у металлических термометров сопротивления, оно обычно составляет 1, 2, 5, 10, 15 и 30 кОм. Поэтому может применяться двухпроводная схема включения.

Где находится на схеме

Отображение терморезистора на схеме может различаться. Изделие легко найти по обозначениям t и t0. Внешне оно отражается как сопротивление, через которое проходит полоска по диагонали с «подставкой» под t0 снизу. Главные обозначения — R1, TH1 или RK1.

Если возникают сомнения в сфере применения, терморезистор можно нагреть и посмотреть на его поведение. Если сопротивление будет меняться, это нужный элемент.

Терморезисторы используются почти везде — в плате зарядного устройства, в автомобильных усилителях, блоках питания ПК, в Li-Ion аккумуляторах и других устройства. Найти их на схеме не трудно.

Чем можно заменить

Менять терморезистор лучше всего на аналогичный, сверяясь со справочником или технической документацией. Однако при наличии опыта и знаний об устройстве того или иного аппарата можно заменить ТР на обычный проволочный резистор. Следует проверить:

  • условия срабатывания реле – по времени или напряжению;
  • изменение времени выхода на рабочий режим;
  • необходимость последовательного соединения сразу нескольких резисторов.

Важно понимать, какие функции выполнял ТР. В некоторых случаях замена окажется нецелесообразной либо невозможной

Терморезисторы – необходимый элемент для функционирования современной электротехники. Это точный и эффективный датчик, позволяющий контролировать работу устройств во многих сферах. Его применяют уже более 90 лет, заменить его в ближайшее время удастся с малой вероятностью.

Где используется (сфера применения)

Терморезисторы активно применяются в разных сферах, тесно связанных с электроникой. Они особенно важных при реализации процессов, зависящих от правильности настройки температурного режима.

Такой подход актуален для компьютерных технологий, устройств передачи информации, высокоточного промышленного оборудования и т. д.

Распространенный способ применения терморезисторов — ограничение токов, возникающих в процессе пуска аппаратов.

При подаче напряжения к БП конденсатор быстро набирает емкость, что приводит к протеканию повышенного тока. Если не ограничить этот параметр, высок риск повреждения (пробоя) диодного моста.

Для защиты дорогостоящего узла применяется термистор — элемент, ограничивающий ток в случае резкого нагрева. После нормализации режима температура снижается до безопасного уровня, и сопротивление термистора возвращается до первоначального уровня.

Применение термисторов

Терморезисторы применяемые в качестве датчиков, могут работать в двух режимах. В первом случае температурный режим зависит лишь от температуры окружающей среды. Значение тока, проходящего через термистор, очень мало и нагревания устройства практически не происходит. Второй режим предполагает нагревание термистора электрическим током, проходящим внутри него. В данном случае значение температуры будет зависеть от различных изменяющихся условий тепловой отдачи. Это может быть плотность газовой среды, окружающей прибор, интенсивность обдува и другие факторы.

Каждый термистор, принцип работы которого основан на снижении сопротивления при повышении температуры, используется в определенных сферах электротехники. Они применяются для измерения и компенсации температуры, в крупных бытовых электроприборах – холодильниках и морозильных камерах, посудомоечных машинах и другой технике. Эти устройства нашли широкое применение в автомобильной электронике. С их помощью измеряется температура охлаждающей жидкости или масла, а также температурные показатели других элементов автомобиля.

В кондиционере термисторы устанавливаются в тепловом распределителе. Кроме того, они используются в качестве датчика слежения за температурой в комнате. С помощью термисторов осуществляется блокировка дверей нагревательных приборов, они устанавливаются в нагреватели теплых полов и в газовые котлы. Терморезисторы применяются, когда нужно определить уровень нестандартных жидкостей, например, жидкого азота. В целом, они получили самое широкое распространение в промышленной электронике.

Терморезисторы: принцип работы

Фотодиоды: принцип работы

Принцип работы мультиварки

Симистор принцип работы при коммутации

Термопара: принцип работы

Как проверить резистор мультиметром: особенности проверки, прозвонка на исправность термистора и позистора

Главные параметры

При выборе детали важно ориентироваться на ее показатели и характеристики, меняющиеся в зависимости от типа, производителя, исходного материала и других показателей. При выборе изделия нужно выяснить главные параметры и определить, подходят они для решения поставленной задачи или нет

При покупке нужно быть уверенным, что деталь подходит по размеру и поместится на плате (в схеме). Параметры измеряются в Омах и указываются применительно к текущей температуре в градусах Цельсия или Кельвинах. Если деталь рассчитана на работу при температурах от -100 до +200 градусов Цельсия, температурный режим для окружающей среды принимается на уровне 20-25 градусов Цельсия.

Параметр отражает тепловую инерционность. При расчете учитывается время, которое необходимо для изменения температуры термического резистора на 63% от разницы t детали и окружающего воздуха. В большинстве случаев этот параметр принимается равным 100 градусов Цельсия. ТКС (в % на один градус Цельсия).

Как правило, этот показатель прописывается для той же температуры t, что и холодное сопротивление. В такой ситуации при обозначении используются другие цифры — at. Мощность рассеивания Pmax (предельно допустимый параметр), Вт. По этому показателю можно судить о пределе, до достижения которого в полупроводнике не происходит необратимых изменений (параметры остаются прежними). При этом превышение температуры tmax при достижении Pmax исключено.

Температура tmax — максимально допустимый параметр, при котором характеристики терморезистора длительное время остаются без изменений (на установленном производителем уровне). Коэффициент энергетической чувствительности (измеряется в Вт/проценты*R). Обозначение — G. Показатель отражает мощность, которую необходимо рассеять на детали для снижения параметра R на один процент.

Коэффициент рассевания (измеряется в Вт на один градус Цельсия). Условное обозначение — H. Параметр отражает мощность, которая рассеивается на термическом резисторе при разнице в температурных режимах детали и окружающего воздуха на один градус. Рассмотренные выше коэффициенты (G и H) зависят от характеристик применяемого полупроводника и особенностей обмена тепла между изделием и окружающей его средой. Параметры связаны друг с другом через специальную формулу — G=H/100а.

READ  Конструкция и принцип действия

PTC

Основные сведения

Позисторы, как было сказано, имеют положительный ТКС, то есть их сопротивление повышается при нагреве. Их изготавливают на основе титаната бария (BaTiO3). У позистора такой график температуры и сопротивления:

Кроме этого нужно обратить внимание на его вольтамперную характеристику:

Рабочий режим зависит от выбора рабочей точки позистора на ВАХ, например:

  • Линейный участок используется для измерения температуры;
  • Нисходящий участок используется в пусковых реле, реле времени, измерения мощности ЭМИ на СВЧ, противопожарной сигнализации и прочего.

На видео ниже рассказывается, что такое позисторы:

Где применяется

Сфера применения позисторов достаточно широка. В основном они используются в схемах защиты оборудования и устройств от перегрева или перегрузки, реже для измерения температуры, а также в качестве автостабилизирующих нагревательного элемента. Кратко перечислим примеры использования:

  1. Защиты электродвигателей. Устанавливаются в лобовой части каждой обмотки электродвигателя (для односкоростных трёхфазных 3, для двухскоростных 6 и т.д.), PTC-терморезистор предотвращает перегорание обмотки в случае заклинивания ротора или при выходе из строя системы принудительного охлаждения. Как работает эта схема? Позистор используется в качестве датчика, подключенного к управляющему устройству с исполнительными реле, пускателями и контакторами. В случае нештатной ситуации его сопротивление повышается и этот сигнал передаётся на управляющий орган, двигатель отключается.
  2. Защиты обмоток трансформатора от перегрева и (или) перегрузки, тогда позистор устанавливается последовательно с первичной обмоткой.
  3. Система размагничивания кинескопов ЭЛТ-телевизоров и мониторов. Кстати эта деталь часто выходит из строя и с этим случаем приходится сталкиваться при ремонте, характерен при этом выход из строя предохранителя.
  4. Нагревательный элемент в клеевых пистолетах. В автомобилях для прогрева впускного тракта, на пример на фото ниже изображен подогреватель канала ХХ карбюратора Pierburg.

Терморезисторы – это группа устройств, способных преобразовать температуру в электрический сигнал, который считывают посредством измерения падения напряжения или силы тока в цепи, где он установлен. Или же они сами по себе могут являться регулирующим органом, если это позволяют сделать его параметры. Простота и доступность этих устройств позволяет их широко использовать как для профессионального конструирования приборов, так и для радиолюбительской практики.

Напоследок рекомендуем просмотреть видео, на котором подробно рассказывается, что такое терморезистор, как он работает и где применяется:

Наверняка вы не знаете:

  • Онлайн расчет резистора для светодиода
  • Как зависит сопротивление проводника от температуры
  • Как сделать терморегулятор своими руками

Особенности конструкций

Классификация основывается на ключевом параметре – температурном коэффициенте сопротивления (ТКС), который есть у любого проводника или полупроводника. Он указывает, на какую величину изменяется Ом за каждый градус. В зависимости от материала изготовления ТКС может быть положительным или отрицательным.

Позисторы

Позистор – что это такое, объясняет параметр ТКС. Резистор с положительным значением называется позистором (PTC). Основой для изготовления служит металл. Самыми высокими показателями термосопротивления при инертности к внешним воздействиям обладают медь и платина.

Пример позисторов

Особенности:

  1. Медные терморезисторы стоят дешевле, но применяются только при работе с температурами до 180 градусов. У них низкая устойчивость к агрессивной среде и быстрая окисляемость.
  2. Платиновые – работают до 1100 градусов, однако наиболее точные результаты показывают при верхней границе в 650. Недостаток – дороговизна.

Часто можно встретить вопрос: что такое позисторы ТСМ и ТСП. Ответом служит последняя буква, указывающая на основу: медь либо платину.

Основное назначение позистора – предохранитель для защиты элементов цепи. Используется последовательное подключение. Область их применения ограничена из-за малой скорости быстродействия.

Термисторы

Гораздо чаще применят более чувствительные и недорогие приборы  – термисторы. У терморезистора NTC отрицательный ТКС (с ростом температуры сопротивление уменьшается). При создании применяют полупроводниковые составы на основе окислов марганца, меди и кобальта. По сравнению с позисторами, такие устройства более долговечны, надежны, имеют стабильную линейность при работе до 200 градусов.

Термисторы со стандартной маркировкой

Недостаток – невозможность массового изготовления терморезисторов с идентичными характеристиками. Параметры могут отличаться даже у приборов из одной партии, из-за чего приходится повторно регулировать оборудование. Схема монтажа термисторов – мостовая.

Выводы

Иногда, как разработчикам встраиваемой электроники, нам приходится решать проблему подключения датчика к системе. В этой статье я рассмотрел простую схему датчика температуры на основе термистора и показал, как линеаризовать температурную зависимость сопротивления.

Одним из основных преимуществ использования термисторов является их цена. Как правило, при покупке в небольших количествах эти датчики стоят примерно от $0.05 до $0.10. Точность для этих датчиков вполне приличная. Обычно допуск сопротивления или допуск R25 для этих устройств составляет от ±3% до ±5%. Поэтому схема линеаризации с нелинейностью ±3 °C также может считаться удовлетворительной.

Конечно, мы всегда можем использовать более дорогой датчик, который даст более точный результат. К подобным типам датчиков можно отнести:

  1. Датчики с PN-переходом. Низкая стоимость, приемлемая точность.
     
  2. Микросхемы датчиков температуры. Обычно они представляют собой некоторую разновидность датчиков с PN-переходом.
     
  3. Резистивные датчики температуры (RTD). Они, как правило, очень точны и значительно дороже.
     
  4. Термопары. Их диапазон измерения обычно намного больше, а цена сравнительно невысока.
     
  5. Инфракрасные датчики. Чаще всего их используют для измерения тепловых излучений, уровни которых затем преобразуют в температуру.

Это лишь несколько из тех методов, с помощью которых можно измерять температуру. О некоторых из них, возможно, я смогу рассказать в будущей статье.

А как вы измеряете температуру в своей встраиваемой системе? Вы видите, что я показал очень дешевый способ измерения этого физического параметра. Но помимо него существует еще уйма других методов.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: