Датчики, элементы измерения и контроля

Инфракрасный датчик движения человека

Применение

  • Автоматическое управление освещением
  • Различные автоматизированные системы управления (АСУ)

Мультисенсор 3 в одном: Инфракрасный датчик движения и освещенности и ИК-приемник

Разобранный датчик движения

Принцип работы датчика

Принцип работы основан на отслеживании уровня ИК-излучения в поле зрения датчика (как правило, пироэлектрического). Сигнал на выходе датчика монотонно зависит от уровня ИК излучения, усредненного по полю зрения датчика. При появлении человека (или другого массивного объекта с температурой большей, чем температура фона) на выходе пироэлектрического датчика повышается напряжение. Для того чтобы определить, движется ли объект, в датчике используется оптическая система — линза Френеля. Иногда вместо линзы Френеля используется система вогнутых сегментных зеркал. Сегменты оптической системы (линзы или зеркала) фокусируют ИК-излучение на пироэлементе, выдающем при этом электроимпульс. По мере перемещения источника ИК-излучения, оно улавливается и фокусируется разными сегментами оптической системы, что формирует несколько последовательных импульсов. В зависимости от установки чувствительности датчика, для выдачи итогового сигнала на пироэлемент датчика должно поступить 2 или 3 импульса.

Виды

По схеме построения индукционные датчики принято разделять только на 2 отдельных вида: одинарные и дифференцированные.

Одинарные

Устройства только с одним магнитопроводом. Такая схема обычно применяется при разработке бесконтактных выключателей.

Дифференциальные

Отличаются наличием сразу 2-ух магнитопроводов, каждый из которых специально сделанных в виде «ш». Это позволяет взаимокомпенсировать воздействие, оказываемое на сердечник, повышая таким образом точность производимых измерений. По сути, схема представляет из себя систему из 2-ух датчиков, соединенных общим якорем.

Обзор емкостных датчиков CR

CR — серия емкостных цилиндрических датчиков от Autonics (рисунок 9).

Рисунок 9 — Внешний вид датчиков семейства CR

Выпускаются датчики с двух типоразмеров CR18 и CR30 с зонами чувствительности 8 мм и 15 мм соответственно.

Двухпроводные нормально разомкнутые версии CRxx-xAO и двухпроводные нормально замкнутые версии CRxx-xAС работают с переменным выходным напряжением 110..240 В и током 5…200 мА. Они имеют частоту срабатывания 20 Гц.

Трехпроводные версии предназначены для работы в цепях постоянного напряжения 10…30 В с выходными токами до 200 мА. Их частота срабатывания достигает 50 Гц.

Состояние датчика можно определить по светодиоду. Если он светиться, то ток поступает в нагрузку.

Таблица 8 — Основные характеристики 3-х проводных датчиков семейства CR

Параметр

Модель

CR18-8DN

CR30-15DN

CR18-8AO

CR30-15AO

CR18-8DP

CR30-15DP

CR18-8AC

CR30-15AC

CR18-8DN2

CR30-15DN2

Зона чувствительности

8 мм

15 мм

8 мм

15 мм

Гистерезис

Макс. 20% от расстояния срабатывания

Стандартный объект для обнаружения

50x50x1 мм

(Железо)

(Железо)

(Железо)

(Железо)

Рабочий зазор

0…5,6 мм

0…10,5 мм

0…5,6 мм

0…10,5 мм

Напряжение питания (ном)

12/24 В=

100/240 В~

Напряжение питания (предельное)

0…30 В=

85…264 В~

Ток потребления

Макс. 15 мА

Макс. 2,2 мА

Частота срабатывания *

50 Гц

20 Гц

Температурный дрейф

Макс. ±10% от расстояния срабатывания при температуре окружающей среды 20℃

Номинальный ток

Макс. 200 мА

Сопротивление изоляции

Мин. 50 МОм (500 В=)

Электрическая прочность диэлектрика

1500 В~, 50/60 Гц в течение 1 минуты

Стойкость к вибрациям

амплитуда 1 мм при частоте от 10 до 55 Гц по каждому из направлений X, Y, Z в течение 2 часов

Стойкость к ударным нагрузкам

500 м/с²(примерно 50G) направления X, Y, Z 3 раза

Индикатор

Индикатор работы (красный светодиод)

Рабочая температура

-25…70°C

Температура хранения

-30…80°C

Влажность

35…95%

Встроенная защита

от перенапряжения, от обратной полярности

от перенапряжения

Степень защиты (IP)

IP66

IP65

IP66

IP65

Масса

76 г

206 г

70 г

200 г

* Частота срабатывания представляет собой среднее значение: стандартный объект с удвоенной шириной на расстоянии 1/2 от номинального

Именования датчиков серии CR включает 5 позиций: тип датчика, форму, диаметр головки, код зоны чувствительности, код типа выходного каскада (таблица 9).

Таблица 9 – Именование датчиков семейства CR

C

R

30

-15

DN

Тип датчика

Форма корпуса

Диаметр головки датчика, мм

Зона чувствительности, мм

Тип выхода

С — емкостной

R — цилиндр

18

8

DN

3-х проводной, NPN, нормально разомкнутый, питание 24 В (DC)

30

15

DN2

3-х проводной, NPN, нормально замкнутый, питание 24 В (DC)

DP

3-х проводной, PNP, нормально разомкнутый, питание 24 В (DC)

DP2

3-х проводной, NPN, нормально замкнутый, питание 24 В (DC)

AO

2-х проводной, нормально разомкнутый, питание 110-240 В (AC)

2-х проводной, нормально замкнутый, питание 110-240 В (AC)

Стоит отметить и высокую степень защиты: IP66 для CR18, IP66 для CR30. Изоляционные свойства так же на высоте. Так как емкостные датчики способны обнаруживать не только металлические объекты, то спектр приложений серии CR еще шире, чем у индуктивных датчиков:

  • концевые выключатели станков;
  • детекторы автоматических линий розлива молока, пива, и т.д.;
  • датчики уровня жидкости;
  • детекторы обнаружения брака в текстильном производстве;
  • и т.д.

Индукционные датчики следующего поколения

Благодаря новым разработкам в этой области, были созданы усовершенствованные модели индукционных датчиков следующего поколения. Принцип работы остался прежним, однако подверглась тщательной переработке конструкция устройства. В результате датчики теперь оснащаются тонкими платами, распечатанными на 3D-принтерах, и современной цифровой электроникой. Кроме того, их производят на гибких подложках, что избавляет от необходимости использования традиционных кабелей и разъемов. Так что пользоваться устройствами можно даже в тяжелых погодных условиях.

К преимуществам новых разработок можно отнести следующее:

  • снижение стоимости и веса, более компактные размеры;
  • возможность выбора практически любых форм-факторов;
  • повышение точности реагирования на металлические объекты;
  • возможность проведения замеров, связанных со сложной геометрией, в двух или трех измерениях;
  • упрощение конструкции;
  • возможность устанавливать несколько индукционных датчиков близко друг к другу из-за высокой электромагнитной совместимости.

УФ-датчик

Эти датчики измеряют интенсивность или мощность падающего ультрафиолетового излучения. Форма электромагнитного излучения имеет большую длину волны, чем рентгеновское излучение, но все же короче, чем видимое излучение.

Активный материал, известный как поликристаллический алмаз, используется для надежного измерения ультрафиолета. Приборы могут обнаруживать различное воздействие на окружающую среду.

Критерии выбора устройства:

  1. Диапазоны длин волн в нанометрах (нм), которые могут быть обнаружены ультрафиолетовыми датчиками.
  2. Рабочая температура.
  3. Точность.
  4. Вес.
  5. Диапазон мощности.

Рис.2.1. Внешний вид бесконтактного датчика

Бесконтактный выключатель (далее ВБ) осуществляет коммутационную операцию при попадании объекта воздействия в зону чувствительности выключателя. Отсутствие механического контакта между воздействующим объектом и чувствительным элементом ВБ обеспечивает высокую надежность его работы

Рис.2.2. Бесконтактный выключатель

Упрощенно, функциональная схема бесконтактного выключателя состоит из трех блоков:

Рис.2.3. Функциональная схема бесконтактного выключателя

При приближении объекта воздействия к активной поверхности чувствительного элемента происходит срабатывание бесконтактного выключателя. При этом коммутационный элемент производит замыкание или размыкание (или выполняет обе указанные операции) в цепях постоянного тока до 400 мА и в цепях переменного тока до 250 мА.

Бесконтактные датчики положения классифицируются по принципу действия чувствительного элемента — индуктивный, оптический, емкостный
и др.

READ  Повышение надежности электрических контактов

Бесконтактные выключатели — это первичные приборы для автоматизации технологического процесса различных отраслей промышленности, таких как

· станкостроение,

· автомобилестроение,

· нефтехимическая промышленность,

· машиностроение,

· пищевая промышленность и пр.

Столь широкая область применения ВБ обусловлена большим количеством возможных технологических решений, реализуемых с их помощью:

· подсчёт количества объектов,

· контроль положения объекта,

· регистрация наличия или отсутствия объекта,

· отбор объектов по их габаритам, цвету и другим физическим свойствам,

· определение скорости,

· определение угла поворота

и многое другое.

2.1.1. Индуктивные датчики.

Индуктивный датчик — бесконтактный датчик предназначенный для бесконтактного получения информации о перемещениях рабочих органов машин, механизмов, роботов и т.п. и преобразования этой информации в электрический сигнал.

Индуктивный датчик распознает и соответственно реагирует на все токопроводящие предметы.

Индуктивные датчики широко используются для решения задач АСУ ТП. Выполняются с нормально разомкнутым или нормально замкнутым контактом.

Принцип действия
основан на изменении параметров магнитного поля, создаваемого катушкой индуктивности внутри датчика.

Принцип действия
бесконтактного конечного выключателя (ВК) основан на изменении амплитуды колебаний генератора при внесении в активную зону датчика металлического, магнитного, ферромагнитного или аморфного материала определенных размеров. При подаче питания на конечный выключатель в области его чувствительной поверхности образуется изменяющееся магнитное поле, наводящее во внесенном в зону материале вихревые токи, которые приводят к изменению амплитуды колебаний генератора. В результате вырабатывается аналоговый выходной сигнал, величина которого изменяется от расстояния между датчиком и контролируемым предметом. Триггер преобразует аналоговый сигнал в логический, устанавливая уровень переключения и величину гистерезиса

Устройство и принцип действия

Индуктивный датчик LJ12A3-4-Z/BX (D-12мм)

Индукционные датчики положения, помимо электронного компаратора, содержат в своем составе следующие обязательные компоненты:

  • стальной корпус с разъемом для соединительного шнура;
  • встроенный чувствительный элемент, регистрирующий на изменения магнитного поля, выполнен в виде стального сердечника с катушкой;
  • исполнительный релейный модуль;
  • индикатор активации на светодиоде.

Конструкции различных моделей датчиков металла могут иметь некоторые отличия. Они не влияют на сам индукционный датчик, принцип работы его от этого не меняется.

Внутреннее строение индуктивного датчика перемещения

В соответствии с устройством прибора суть его работы описывается следующим образом:

  • перемещение металлической части контролируемого объекта приводит к изменению индуктивности чувствительного элемента датчика;
  • отклонение объясняется искажением его магнитного поля, следствием которого является изменение параметров электрической схемы и ее активация (светодиод загорается);
  • после этого срабатывает электронный модуль и посылает сигнал на исполнительное устройство;
  • при поступлении импульса о превышении перемещением допустимого предела выходной (релейный) узел отключает контролируемое оборудование от сети.

Первый компактный фотоэлектрический датчик из нержавеющей стали для пищевой промышленности

Компания Omron представила продукт E3ZM, который позиционируется как первый в мире компактный фотоэлектрический датчик из нержавеющей стали марки 316L. Датчик отвечает жестким требованиям надежной очистки и гигиены в пищевой промышленности, в фармацевтическом производстве и производстве напитков. Срок службы этих датчиков в 200 раз превышает срок службы традиционно используемых датчиков, выполненных в корпусе из пластика или отлитом из сплавов. Как утверждают производители, благодаря снижению затрат на техническое обслуживание и замену отслуживших датчиков, снижение себестоимости будет значительным, что приведет к повышению производительности и рентабельности. Наличие гладкого, устойчивого к моющим средствам и химикатам кожуха и легко моющихся поверхностей позволяет поддерживать оптимальные гигиенические требования; это превышает стандартные качества для использования в пищевой промышленности. Герметично запаянный корпус выдерживает высокое давление воды и отвечает жестким требованиям степени защиты IP69K для промышленных предприятий. Могут быть установлены различные режимы регистрации: прием сквозного луча, обратно отраженного или рассеянного излучения, а также прием излучения с подавлением фона.www.omron-industrial.ruOmron Electronics

Сенсорный датчик

Это еще одна большая группа устройств. Классификация датчиков давления применяется для проведения оценки внешних параметров, отвечающих за появление дополнительных характеристик при действии определенного объекта либо вещества.

Датчик касания действует как переменный резистор в соответствии с местом, где он подключается.

Сенсорный датчик состоит из:

  1. Полностью проводящее вещество, такое как медь.
  2. Изолированный промежуточный материал, такой как пена или пластик.
  3. Частично проводящий материал.

При этом строгого разделения нет. Классификация датчиков давления устанавливается посредством выбора конкретного сенсора, который и оценивает появляющееся напряжение внутри либо снаружи изучаемого объекта.

Фотоэлектрические датчики

Производитель утверждает, что фотоэлектрические датчики трех серий характеризуются уникальными возможностями, часто недоступными для традиционных фотоэлектрических датчиков. Так, FARS Series — это стандартный 18-мм цилиндрический диффузный датчик в неметаллическом корпусе, работающий на основе технологии подавления фона, которая позволяет значительно снизить ложное считывание за границами заданного расстояния. Расстояние считывания для этого датчика составляет 30 — 130 мм, а регулирующий потенциометр увеличивает точность устройства в пределах диапазона. MQ Series — это линейка диффузных фотоэлектрических датчиков переменного тока с уникальным 90° оптическим корпусом, что позволяет устанавливать его на стандартном 18-мм монтажном кронштейне или в отверстии в условиях, когда пространства ограничено. Он оснащен разъемным соединением M12 и обеспечивает подавление фона на расстоянии от 50 до 100 мм. HEE/HER Series — это пары датчиков для приема просвечивающего излучения в миниатюрном 8 -мм цилиндрическом корпусе из нержавеющей стали с классом защиты IP67. Максимальная частота переключения этого датчика — 10 кГц, что позволяет использовать его в приложениях для высокоскоростного подсчета и управления движением.www.automationdirect.comAutomationDirect

Датчик приближения

Все чаще в современных транспортных средствах используют эту технологию. Классификация электрических датчиков с использованием световых и сенсорных модулей набирает популярность у автомобильных производителей.

Датчик приближения обнаруживает наличие объектов, которые находятся почти без каких-либо точек соприкосновения. Поскольку нет контакта между модулями и воспринимаемым объектом и отсутствуют механические детали, эти устройства имеют длительный срок службы и высокую надежность.

Различные типы датчиков приближения:

  1. Индуктивные датчики приближения.
  2. Емкостные датчики приближения.
  3. Ультразвуковые датчики приближения.
  4. Фотоэлектрические датчики.
  5. Датчики Холла.

Устройство и принцип действия индуктивных и емкостных датчиков приближения

Емкостные и индуктивные датчики способны обнаруживать присутствие объекта без непосредственного контакта с ним. При этом индуктивные выключатели чувствительны только к металлическим предметам, а емкостные способны детектировать любые предметы, диэлектрическая проницаемость которых отлична от воздуха (например, воду, дерево, металл, пластик и т.д.). Рассмотрим принцип работы каждого датчика отдельно.

Основным элементом индуктивного датчика является катушка индуктивности (рисунок 2). Она подключена к генератору. Переменное электрическое напряжение на ее выводах вызывает переменное магнитное поле. Линии поля будут перпендикулярны направлению тока в витках катушки.

Рисунок 2 — Принцип работы индуктивного датчика приближения

При отсутствии вблизи катушки металлических объектов линии магнитного поля замыкаются по воздуху. А амплитуда электрических колебаний будет максимальной.

Если же к катушке приближать металлический объект, то все большая часть силовых линий начнет замыкаться через него. Индуктивность катушки начнет увеличиваться. Этот процесс схож с процессом введения сердечника. При этом рост индуктивности приведет к уменьшению амплитуды и/или частоты колебаний.

READ  Гост р 58408-2019 сети электрические собственных нужд и оперативного тока железнодорожных тяговых подстанций, трансформаторных подстанций и линейных устройств системы тягового электроснабжения. технические требования, правила проектирования, методы электр

Если такую систему снабдить детектором, то по изменению амплитуды сигнала можно судить о наличии металлического объекта, его приближении или удалении.

В основе работы емкостного датчика, как следует из названия, положено использование емкостных связей. Сам датчик, по сути, представляет собой одну из обкладок пространственного конденсатора. Второй обкладкой является земля. В качестве диэлектрика выступает преимущественно воздух.  Так как диэлектрическая проницаемость воздуха мала (ε=1), то емкость такого конденсатора не велика. Если же к датчику начинает приближаться некоторый объект с более высоким значением ε, то суммарная емкость начнет увеличиваться (рисунок 3).

Рисунок 3 — Принцип работы емкостного датчика приближения

Таким образом, по величине емкости можно судить о наличии объекта, его приближении или удалении. При этом материал объекта может быть практически любым, важным является только значение его диэлектрической проницаемости.

Как правило, для измерения используются схемы с преобразованием емкости в частоту или амплитуду колебаний, которые измеряются с помощью детектора. В итоге, как и в случае с индуктивным датчиком необходимо наличие двух обязательных элементов: генератора и детектора (рисунок 4).

Рисунок 4 — Структурные схемы датчиков приближения

Емкостные и индуктивные выключатели имеют выходной сигнал релейного типа (включен или выключен) (рисунок 5). По этой причине, схема датчиков имеет переключательный элемент — триггер, который для предотвращения ложных срабатываний снабжен гистерезисом.

Рисунок 5 — Формирование выходных сигналов выключателей

Рассмотрим основные характеристики бесконтактных выключателей.

Распределение по категориям

Классификации датчиков подразделяются на следующие категории:

  1. Первичное входное количество параметров.
  2. Принципы трансдукции (использование физических и химических эффектов).
  3. Материал и технология.
  4. Назначение.

Принцип трансдукции является фундаментальным критерием, которому следуют для эффективного сбора информации. Обычно материально-технические критерии выбираются группой разработки.

Классификация датчиков на основе свойств распределяется следующим образом:

  1. Температура: термисторы, термопары, термометры сопротивления, микросхемы.
  2. Давление: оптоволоконные, вакуумные, эластичные манометры на жидкой основе, LVDT, электронные.
  3. Поток: электромагнитные, перепад давления, позиционное смещение, тепловая масса.
  4. Датчики уровня: перепад давления, ультразвуковая радиочастота, радар, тепловое смещение.
  5. Близость и смещение: LVDT, фотоэлектрический, емкостный, магнитный, ультразвуковой.
  6. Биосенсоры: резонансное зеркало, электрохимический, поверхностный плазмонный резонанс, светоадресуемый потенциометрический.
  7. Изображение: устройства с зарядовой связью, CMOS.
  8. Газ и химия: полупроводник, инфракрасный, проводимость, электрохимический.
  9. Ускорение: гироскопы, акселерометры.
  10. Другие: датчик влажности, датчик скорости, масса, датчик наклона, сила, вязкость.

Это большая группа, состоящая из подразделов. Примечательно, что с открытием новых технологий разделы постоянно пополняются.

Назначение классификации датчиков, основанное на направлении использования:

  1. Контроль, измерение и автоматизация производственного процесса.
  2. Непромышленное использование: авиация, медицинские изделия, автомобили, бытовая электроника.

Датчики могут быть классифицированы в зависимости от требований к питанию:

  1. Активный датчик — приборы, которые требуют питания. Например, LiDAR (обнаружение света и дальномер), фотопроводящая ячейка.
  2. Пассивный датчик — датчики, которые не требуют питания. Например, радиометры, пленочная фотография.

В эти два раздела входят все известные науке приборы.

В текущих применениях назначение классификации датчиков можно распределить по группам следующим образом:

  1. Акселерометры — основаны на технологии микроэлектромеханического сенсора. Они используются для мониторинга пациентов, которые включают кардиостимуляторы. и динамических систем автомобиля.
  2. Биосенсоры — основаны на электрохимической технологии. Применяются для тестирования продуктов питания, медицинских устройств, воды и обнаружения опасных биологических патогенов.
  3. Датчики изображения — основаны на технологии CMOS. Они используются в бытовой электронике, биометрии, наблюдении за дорожным движением и безопасностью, а также на компьютерных изображениях.
  4. Детекторы движения — основаны на инфракрасной, ультразвуковой и микроволновой/ радиолокационной технологиях. Задействуются в видеоиграх и симуляторах, световой активации и обнаружении безопасности.

Оптоволоконные лазерные кодовые датчики с пикометровым разрешением

Система с оптоволоконным лазерным кодовым датчиком RLE20 обеспечивает субнанометровую нелинейность и разрешающую способность до 38 пикометров. Это позволяет производителям точных кинематических систем, лабораторных и медицинских инструментов, а также производителям оборудования для полупроводниковой промышленности решать задачи по удовлетворению все более строгих требований. Оптическое волокно подводит свет от одного лазера к двум осям измерения, что исключает необходимость в использовании удаленных светоделительных пластин, отклоняющих устройств и регулируемых штативов. Дифференциальная схема измерения и стабильность частоты лазера 2-Ю»9 гарантирует строжайший контроль точности по осям X-Y. Субна-нометровое разрешение возможно при скоростях до 1 м/с и длине оси до 4 м. Благодаря современной конструкции, регулировка лазера сводится к простым операциям «крепления и набора кода» Для формирования сложной системы позиционирования оси необходима юстировка только двух компонентов. Это позволяет значительно сократить время на установку и габариты оборудования. Оптоволоконный кабель позволяет размещать лазер на удалении до 3 м, благодаря чему экономится рабочее пространство, а нагревание, вызванное лазером, не затрагивает ось измерения вследствие снижения теплового дрейфа. Система выдает позиционные выходные сигналы в дифференциальном числовом формате RS-422 и/или в формате синус/ косинус 1 Vpp. Цифровой выходной сигнал имеет разрешение до 10 нм, в то время как для получения разрешения 0,39 нм и 38 пм соответственно, аналоговый сигнал может использоваться вместе с интерполятором RGE от Renishaw или новым параллельным интерфейсом RP120.www.renishaw.ruRenishaw

Определения понятия датчик

Широко встречаются два основных значения:

· чувствительный элемент, преобразующий параметры среды в пригодный для технического использования сигнал, обычно электрический, хотя возможно и иной по природе, например — пневматический сигнал;

· законченное изделие на основе указанного выше элемента, включающее, в зависимости от потребности, устройства усиления сигнала, линеаризации, калибровки, аналого-цифрового преобразования и интерфейса для интеграции в системы управления. В этом случае чувствительный элемент датчика сам по себе может называться сенсором.

Эти значения соответствуют практике использования термина производителями датчиков. В первом случае датчик это небольшое, обычно монолитное устройство электронной техники, например, терморезистор, фотодиод и т. п., которое используется для создания более сложных электронных приборов. Во втором случае — это законченный по своей функциональности прибор, подключаемый по одному из известных интерфейсов к системе автоматического управления или регистрации. Например, фотодиоды в матрицах (фото) и др.

В зависимости от вида входной (измеряемой) величины
различают:

датчики механических перемещений (линейных и угловых),

-пневматические,

-электрические,

-расходомеры,

-датчики скорости,

-ускорения,

-усилия,

-температуры,

-давления

и др.

Различают три класса датчиков:

— аналоговые датчики, т. е. датчики, вырабатывающие аналоговый сигнал, пропорционально изменению входной величины;

— цифровые датчики, генерирующие последовательность импульсов или двоич­ное слово;

— бинарные (двоичные) датчики, которые вырабатывают сигнал только двух уровней: «включено/выключено» (иначе говоря, 0 или 1); получили широкое распространение благодаря своей простоте.

2. Датчики положения.

Датчик положения (датчик перемещения) — это устройство, предназначенное для определения местоположения объекта, который может находиться в твердой или жидкой форме, а также быть сыпучим веществом.

READ  Приложение n 1. группы по электробезопасности электротехнического (электротехнологического) персонала и условия их присвоения

Датчики положения являются первичными источниками информации для систем автоматики, как на основе релейных или логических схем, так и на базе программируемых контроллеров. Надежность всей системы определяется надежностью элемента, наиболее подверженного воздействию дестабилизирующих факторов.

Датчик положения (датчик перемещения) бывает двух видов: бесконтактный (индуктивные датчики, магнитные, емкостные, ультразвуковые, оптические) и контактный. Основным представителем второго типа является энкодер — устройство, преобразующее угол поворота объекта в сигнал, позволяющий определить этот угол.

По типу выхода датчик положения (датчик перемещения) разделяется на аналоговый, цифровой и дискретный (выключатели).

2.1.Бесконтактные датчики.

Бесконтактные датчики, бесконтактные выключатели — это приборы промышленной автоматизации, предназначенные для контроля положения объектов.

ГОСТом 26430-85 был введён термин «бесконтактный выключатель». Впоследствии ГОСТом Р 50030.5.2-99 термин заменён на «бесконтактный датчик». В настоящее время для данных изделий используются оба термина.

Погрешности

Погрешности в процессе преобразования диагностических значений оказывают влияние на способности индукционных датчиков выдавать достоверную информацию. К основным из них можно отнести следующие.

Электромагнитная

Данную погрешность принято учитывать только в качестве случайной величины. Как правило, она возникает в ходе индуцирования ЭДС в индукционной катушке в результате внешнего воздействия сторонними магнитными полями. Это происходит в процессе производства из-за силовых электроустройств. Они образуют магнитные поля, что впоследствии и формирует электромагнитную погрешность.

От температуры

Эта погрешность тоже выступает в качестве случайного значения, поскольку работа большого числа элементов индукционного датчика напрямую зависит от температурных показателей, поэтому это ключевая величина, которая даже учитывается в процессе проектировки подобного оборудования.

Магнитной упругости

Обычно такая погрешность может проявляться как следствие нестабильности деформации магнитопровода устройства в процессе сборки самого датчика, а также при деформационных изменениях во время работы. Кроме того, оказываемое нестабильным электронапряжением воздействие на магнитопровод оборудования вызывает снижение качества передаваемого сигнала на выходе.

Деформация элементов

Данная погрешность, как правило, проявляется в результате воздействия измеряющей силы на значение деформации частей индукционного датчика, а также под влиянием усилий, оказываемых на нестабильные деформирующие процессы. Кроме того, не меньшее влияние на нее могут оказывать люфты и зазоры, образовавшиеся в подвижных элементах конструкции устройства.

Кабеля

Такая погрешность обычно проявляется от непостоянного значения сопротивления, в случае деформации самого провода и под влиянием температуры. Также подобным образом может сказаться наводка внешними полями ЭДС в кабеле.

Старение

Данная погрешность может проявляться при износе движущихся элементов самого устройства, а также в случае постоянно изменяющихся магнитных свойств используемого магнитопровода. Ее принято считать, строго говоря, случайным значением. В процессе определения данной погрешности учитывают кинематику конструкции индукционного датчика, а во время проектирования подобного оборудования максимальный эксплуатационный срок рекомендуется определять только при работе в обычном режиме, чтобы при этом износ не успел превысить установленного значения.

Технологии

Погрешности технологии проявляются в случае отклонений от технического процесса производства, при явном разбросе технических параметров катушек и остальных элементов во время сборки, влиянии допущенных зазоров при соединении устройства. Для ее измерения принято использовать механическое измерительное оборудование.

Принцип действия

Оптический датчик

  • Ёмкостные выключатели бесконтактные. Измеряют ёмкость электрического конденсатора, в воздушный диэлектрик которого попадает регистрируемый объект. Используются в качестве бесконтактных («сенсорных») клавиатур и как датчики уровня жидкостей.
  • Индуктивные выключатели бесконтактные. Измеряют параметры катушки индуктивности, в поле которой попадает регистрируемый металлический объект. Дальность регистрации типового промышленного датчика — от долей до единиц сантиметров. Характеризуются простотой, дешевизной и высокой стабильностью параметров. Широко применяются в качестве концевых датчиков станков.
  • Оптические выключатели бесконтактные. Работают на принципе перекрытия луча света непрозрачным объектом. Дальность типовых промышленных датчиков — от долей до единиц метров. Широко применяются на конвейерных линиях как датчик наличия объекта, используются также для контроля пространственных характеристик предмета (высота, длина, ширина, глубина, диаметр) и подачи сигнала на управляемый механизм при достижении указанного порога. Специфическая разновидность — лазерные дальномеры.
  • Ультразвуковые датчики. Работают на принципе эхолокации ультразвуком. Относительно дешевое решение позволяет измерять расстояние до объекта. Широко применяются в парктрониках автомобилей.
  • Микроволновые датчики. Работают на принципе локации СВЧ излучением «на просвет» или «на отражение». Получили ограниченное распространение в системах охраны как датчики присутствия или движения.
  • Магниточувствительные выключатели бесконтактные. Простая пара магнит — геркон или датчик Холла. Дешевы и просты в изготовлении. Широко применяются в системах контроля доступа и охраны зданий как датчики открывания дверей и окон.
  • Пирометрические датчики. Регистрируют изменения фонового инфракрасного излучения. Получили широкое распространение в системах охраны зданий как датчики движения.

Работа с различными устройствами

Принцип действия и классификация датчиков температуры разделяются и на использование технологии в других типах оборудования. Это могут быть приборные панели в автомобиле и специальные производственные установки в промышленном цеху.

  1. Термопара — модули изготовлены из двух проводов (каждый — из разных однородных сплавов или металлов), которые образуют измерительный переход путем соединения на одном конце. Этот измерительный узел открыт для изучаемых элементов. Другой конец провода заканчивается измерительным устройством, где формируется опорный переход. Ток протекает по цепи, так как температура двух соединений различна. Полученное милливольтное напряжение измеряется для определения температуры на стыке.
  2. Термодатчики сопротивления (RTD) — это типы терморезисторов, которые изготавливаются для измерения электрического сопротивления при изменении температуры. Они дороже, чем любые другие устройства для определения температуры.
  3. Термисторы. Они представляют собой другой тип термического резистора, в котором большое изменение сопротивления пропорционально небольшому изменению температуры.

Ультразвуковые датчики

Ультразвуковой датчик используется для обнаружения присутствия объекта. Это достигается за счет излучения ультразвуковых волн от головки устройства и последующего приема отраженного ультразвукового сигнала от соответствующего объекта. Это помогает в обнаружении положения, присутствия и движения объектов.

Поскольку ультразвуковые датчики полагаются на звук, а не на свет при обнаружении, они широко используются для измерения уровня воды, медицинских процедур сканирования и в автомобильной промышленности. Ультразвуковые волны могут обнаружить невидимые объекты, такие как прозрачные пленки, стеклянные бутылки, пластиковые бутылки и листовое стекло, с помощью своих отражающих датчиков.

Правила выбора

Индукционный датчик считается важным элементом на многих предприятиях, поэтому к его выбору следует подойти очень ответственно. Рекомендуется соблюдать следующие правила:

  • точное определение условий, при которых будет применяться устройство: температурный режим в помещении, влажность, наличие прямого солнечного света и электромагнитного излучения от других приспособлений;
  • скорость производственного процесса, которая будет влиять на корректную работу датчика;
  • точность самого приспособления, обещанная производителем, а также линейность;
  • надежность конструкции и качество материалов, предположительный срок службы и гарантия от компании;
  • класс защиты, используемый в процессе производства, который поможет предупредить поломки, нередко возникающие при неблагоприятных производственных условиях;
  • размеры приспособления также играют роль, поскольку миниатюрные датчики менее подвержены попаданию осколков и других частиц.
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: