Как работает аэс?

Строящиеся российские АЭС

Планируется, что Балтийская АЭС будет экспортировать электроэнергию в страны Европы: Швецию, Литву, Латвию. Продажа электричества в РФ будет производиться через литовскую энергосистему.

  • Белоярская АЭС-2, г. Заречный Свердловской области, на действующей площадке. Один блок – на базе реактора БН-800. Первоначально планируемый на 2014 год пуск был сдвинут из-за недопоставок из Украины в связи с политическими событиями 2014 года.
  • Ленинградская АЭС-2, г. Сосновый Бор Ленинградской области. Четырехблоковая станция на базе реакторов ВВЭР-1200. Будет замещающей для ЛАЭС (Ленинградской). Первый блок планируется ввести в 2015 году, последующие – в 2017, 2018, 2019 гг. соответственно.
  • Нововоронежская АЭС-2 в г. Нововоронеж Воронежской области, неподалеку от действующей. Будет замещающей, планируется строительство четырех блоков, первых – на базе реакторов ВВЭР-1200, следующих – ВВЭР-1300. Начало выхода на проектную производительность – в 2015 году (по первому блоку).
  • Ростовская (см. выше).

История

На конец 1991 года в Российской Федерации функционировало 28 энергоблоков общей номинальной мощностью 20 242 МВт, без учёта Обнинской и Сибирской АЭС, а также без ректоров ВК-50 и БОР-60 в НИИАР г. Димитровград.

С 1991 года по 2015 год к сети было подключено 7 новых энергоблоков общей номинальной мощностью 6 964 МВт: 4-й блок на Балаковской АЭС (1993), 3-й и 4-й блоки на Калининской АЭС (2004 и 2011), 1-, 2- и 3-й блоки на Ростовской АЭС (2001, 2010 и 2014), 4-й блок Белоярской АЭС (2015).

В 2002 году была выведена из эксплуатации первая в мире АЭС — Обнинская. Был заглушен её единственный реактор мощностью 6 МВт.

В 2008 году была закрыта Сибирская АЭС.

На конец 2015 года в стадии строительства находятся 6 энергоблоков, не считая двух блоков Плавучей атомной электростанции малой мощности.

В 2007 году федеральные власти инициировали создание единого государственного холдинга «Атомэнергопром» объединяющего компании Росэнергоатом, ТВЭЛ, Техснабэкспорт и Атомстройэкспорт. 100 % акций ОАО «Атомэнергопром» передавалось одновременно созданной Государственной корпорации по атомной энергии «Росатом».

На начало 2010 года за Россией было 16 % на рынке услуг по строительству и эксплуатации АЭС в мире. Согласно исследованию РБК от июля 2010 года, на сегодня «Атомстройэкспорт», основным акционером которого является государственная корпорация Росатом, сохраняет за собой 20 % мирового рынка строительства АЭС. Эта доля может увеличиться до 25 %. По данным на март 2010 года, Росатом строит 10 атомных энергоблоков в России и 5 за рубежом.

В России построено 10 АЭС, на которых эксплуатируется 31 энергоблок. С 1991 года в строй было введено 3 новых блока. На начало 2006 года в стадии строительства находились ещё три. В 2007 году российские АЭС выработали 160 млрд кВт•ч электроэнергии, что составило 15,7 % от общей выработки в стране. Свыше 4 % электроэнергии, производимой в европейской части России и на Урале, приходится на АЭС. В 2009 г. прирост производства урана составил 25 % в сравнении с 2008 г. После запуска энергоблока Волгодонской АЭС в 2010 году, Путин озвучил планы доведения атомной генерации в общем энергобалансе России с 16 % до 20-30 %.

Сейчас Росатому принадлежит 40 % мирового рынка услуг по обогащению урана и 17 % рынка по поставке ядерного топлива для АЭС. Россия имеет крупные комплексные контракты в области атомной энергетики с Индией, Бангладеш,Арменией, Венесуэлой, Китаем, Вьетнамом, Ираном, Турцией, Болгарией, Белоруссией и с рядом стран Центральной Европы. Вероятны комплексные контракты в проектировании, строительстве атомных энергоблоков, а также в поставках топлива с Аргентиной, Нигерией, Казахстаном, Украиной, Катаром. Ведутся переговоры о совместных проектах по разработке урановых месторождений с Монголией

В России существует большая национальная программа по развитию ядерной энергетики, включающей строительство 28 ядерных реакторов в ближайшие годы, в дополнение к 30, уже построенным в советский период. Так, ввод первого и второго энергоблоков Нововоронежской АЭС-2 должен состояться в 2013—2015гг.

Федеральным агентством по атомной энергии России ведётся не имеющий аналогов в мире проект по созданию уникальных плавучих атомных электростанций малой мощности. В 2010 году замглавы концерна «Росэнергоатом» заявил, что работы по строительству первого экземпляра идут по графику. Готовность станции — конец 2012 года, выход на эксплуатацию — в 2013 году.

Билибинская АЭС

Данная электростанция считается наиболее северной из всех, находящихся в пределах Российской Федерации. Она расположена в Чукотском автономном округе возле населенного пункта Билибино, как и указано на карте. Общее количество элементов насчитывает четыре блока ЭГП-6 по 12 мегаватт каждый. Два из них приведены в рабочее состояние в 1974 году, а остальные – в 1975 и 1976 г.г. Конструкция электростанции позволяет вырабатывать не только электрическую, но и тепловую энергию.

Надобность в создании подобной АЭС возникла в 60-е годы 20-го века, в связи с активизацией добычи золота в указанном районе. С началом его развития потребность в электроэнергии значительно увеличилась. Однако традиционные электростанции построить было невозможно из-за сложностей с доставкой топлива. Большие расстояния не позволили включиться и в Единую энергетическую систему. Поэтому в 1965 году на правительственном уровне решено строить атомную электростанцию, потребляющую не более 40 тонн специального радиоактивного топлива в год. За аналогичный период угля потребовалось бы гораздо больше – 200 тысяч тонн.

Сооружение АЭС было запланировано в суровых климатических условиях севера, на значительном удалении от коммуникаций и путей сообщения. В связи с этим, проект станции делался максимально простым, на основе металлоконструкций, а все составляющие объединялись в общий комплекс. Это позволило создать условия для поддержки одной и той же температуры внутри зданий в условиях суровой морозной зимы.

Монтажные работы начались в 1969 году, а уже в начальный период 1974 года 1-й энергоблок выдал электричество для Билибино и других населенных пунктов. Одновременно поселок был обеспечен теплом путем создания единой тепловой энергетической централи. До сегодняшнего дня Билибинская АЭС остается для чукотского региона наиболее эффективным источником энергии. По причине сокращения добычи золота, нагрузка на комплекс в последние годы заметно снизилась, что вызвало снижение производства электроэнергии.

Атомная энергетика в Украине

Атомные электростанции Украины построены во времена Советского Союза. Совокупная установленная мощность украинских АЭС сравнима с российскими.

Название АЭС

Количество работающих блоков

Тип реакторов

Установленная мощность, МВт

Запорожская

6

ВВЭР-1000

6000

Ровенская

4

ВВЭР-440,ВВЭР-1000

2880

Хмельницкая

2

ВВЭР-1000

2000

Южно-Украинская

3

ВВЭР-1000

3000

До распада СССР атомная энергетика Украины была интегрирована в единую отрасль. В постсоветский период до событий 2014 года на Украине работали промышленные предприятия, выпускающие комплектующие и для российских АЭС. В связи с разрывом промышленных отношений между РФ и Украиной задержаны запланированные на 2014 и 2015 годы пуски энергоблоков, строящихся в России.

Атомные электростанции Украины работают на ТВЭЛах (тепловыделяющих элементах с ядерным топливом, где происходит реакция деления ядер), изготовляющихся в РФ. Желание Украины перейти на американское топливо чуть не привело в 2012 году к аварии на Южно-Украинской АЭС.

К 2015 году госконцерн «Ядерное топливо», в состав которого входит Восточный горно-обогатительный комбинат (добыча урановой руды), пока не смог организовать решение вопроса о производстве собственных ТВЭЛов.

Краткая история развития атомной энергетики в России

Атомная отрасль берет свое начало со времен СССР, когда планировалось реализовать один из авторских проектов о создании взрывчатки из уранового вещества. Летом, в 1945 году благополучно прошло испытание атомное оружие в США, а в 1949 году на Семипалатинском полигоне впервые использовали ядерную бомбу РДС-1. Дальнейшее развитие атомной энергетики в России было следующим:

  • 1953 год – применение взрывчатого устройства РДС-6с;
  • 1954 год – запуск первой станции, строительством которой руководил известный профессор И.В. Курчатов;
  • 1955 год – запуск реактора «БР-1», основанного на нейронах;
  • 1957 год – создана подводная конструкция, называемая «проект К-3»;
  • 1959 год – построен ледокол, получивший название «Ленин». Он имел мощную ядерную систему;
  • 1980-е годы – начато конструирование Горьковской и Воронежской АЭС, способных повысить эффективность атомной энергии;
  • 1990-е годы – введены в эксплуатацию три энергоблока;
  • 1998 год – увеличение производства на 8 млрд. кВт*ч, введение в эксплуатацию нового блока на Волгодонской АЭС;
  • 2008 год – выработка энергии АЭС составила почти 162 млрд. кВт*ч, что оказалось на 2% выше предыдущего периода;
  • 2009-2011 год – рост производительности АЭС по отношению к предыдущему году на 0,6%, 0,5% и 1,7% соответственно;
  • 2015 год – Ростовская АЭС получила дополнительно 25% мощности на 3-м энергоблоке.
READ  Запуск лампы дневного света без стартера

Научно-производственные коллективы трудились много лет для достижения высокого уровня в атомном оружии, и останавливаться на достигнутом не собираются. Позже вы узнаете о перспективах в этой области до 2035 года.

Список АЭС России и союзных республик: период ввода с 1954 по 2001 гг.

  1. 1954 год, Обнинская, г. Обнинск Калужской области. Назначение – демонстрационно-промышленное. Тип реактора – АМ-1. Остановлена в 2002 г.
  2. 1958 год, Сибирская, г. Томск-7 (Северск) Томской обл. Назначение – выработка оружейного плутония, дополнительное тепло и горячая вода для Северска и Томска. Тип реакторов – ЭИ-2, АДЭ-3, АДЭ-4, АДЭ-5. Окончательно остановлена в 2008 году по соглашению с США.
  3. 1958 год, Красноярская, г. Красноярск-27 (Железногорск). Типы реакторов – АДЭ, АДЭ-1, АДЭ-2. Назначение – выработка оружейного плутония, тепла для Красноярского горнообогатительного комбината. Окончательная остановка произошла в 2010 году по соглашению с США.
  4. 1964 год, Белоярская АЭС, г. Заречный Свердловской обл. Типы реакторов – АМБ-100, АМБ-200, БН-600, БН-800. АМБ-100 остановлен в 1983 г., АМБ-200 – в 1990 г. Действующая.
  5. 1964 год, Нововоронежская АЭС. Тип реакторов – ВВЭР, пять блоков. Первый и второй остановлены. Статус – действующая.
  6. 1968 год, Димитровоградская, г. Мелекесс (Димитровоград с 1972 г.) Ульяновской обл. Типы установленных исследовательских реакторов – МИР, СМ, РБТ-6, БОР-60, РБТ-10/1, РБТ-10/2, ВК-50. Реакторы БОР-60 и ВК-50 вырабатывают дополнительно электричество. Постоянно продлевается срок остановки. Статус ­– единственная станция с исследовательскими реакторами. Предположительное закрытие – 2020 год.
  7. 1972 год, Шевченковская (Мангышлакская), г. Актау, Казахстан. Реактор БН, остановлен в 1990 году.
  8. 1973 год, Кольская АЭС, г. Полярные Зори Мурманской области. Четыре реактора ВВЭР. Статус – действующая.
  9. 1973 год, Ленинградская, Город Сосновый бор Ленинградской обл. Четыре реактора РМБК-1000 (такие же, как и на Чернобыльской АЭС). Статус – действующая.
  10. 1974 год. Билибинская АЭС, г. Билибино, Чукотский автномный край. Типы реакторов – АМБ (сейчас остановлен), БН и четыре ЭГП. Действующая.
  11. 1976 год. Курская, г. Курчатов Курской обл. Установлены четыре реактора РМБК-1000. Действующая.
  12. 1976 год. Армянская, г. Мецамор, Армянской ССР. Два блока ВВЭР, первый остановлен в 1989 году, второй действует.
  13. 1977 год. Чернобыльская, г. Чернобыль, Украина. Установлены четыре реактора РМБК-1000. Четвертый блок разрушен в 1986 г., второй блок остановлен в 1991 г., первый – в 1996 г., третий – в 2000 г.
  14. 1980 год. Ровенская, г. Кузнецовск, Ровенская обл., Украина. Три блока с реакторами ВВЭР. Действующая.
  15. 1982 год. Смоленская, г. Десногорск Смоленской области, два блока с реакторами РМБК-1000. Действующая.
  16. 1982 год. Южноукраинская АЭС, г. Южноукраинск, Николаевская обл., Украина. Три реактора ВВЭР. Действующая.
  17. 1983 год. Игналинская, г. Висагинас (ранее Игналинский р-н), Литва. Два реактора РМБК. Остановлена в 2009 году по требованию Евросоюза (при вступлении в ЕЭС).
  18. 1984 год. Калининская АЭС, г. Удомля Тверской обл. Два реактора ВВЭР. Действующая.
  19. 1984 год. Запорожская, г. Энергодар, Украина. Шесть блоков на реактора ВВЭР. Действующая.
  20. 1985 год. Балаковская, г. Балаково Саратовской обл. Четыре реактора ВВЭР. Действующая.
  21. 1987 год. Хмельницкая, г. Нетешин, Хмельницкой обл., Украина. Один реактор ВВЭР. Действующая.
  22. 2001 год. Ростовская (Волгодонская), г. Волгодонск Ростовской обл. К 2014 году работают два блока на реакторах ВВЭР. Два блока в стадии строительства.

Тяньваньская АЭС (Китай)

В 1992 году РФ и Китай подписали межправительственное соглашение о совместном строительстве АЭС в восточной провинции Цзянсу. В декабре 1997 года между «Атомстройэкспортом» (в декабре 2015 года вошел в Группу компаний ASE — инжиниринговый дивизион Росатома) и Цзянсуской корпорацией ядерной энергетики (Jiangsu Nuclear Power Corporation, JNPC) было заключено соглашение о возведении первой очереди Тяньваньской АЭС, состоящей из двух водо-водяных энергетических реакторов мощностью 1 тыс. МВт каждый (ВВЭР-1000). Работы начались в 1998 году. Пуск первого энергоблока состоялся в декабре 2005 года, второго — в сентябре 2007-го. По оценке правительства РФ, общая стоимость строительства первой очереди составила €1,8 млрд.

В марте 2010 года JNPC и «Атомстройэкспорт» подписали рамочный контракт на строительство второй очереди Тяньваньской АЭС (третьего и четвертого энергоблоков) на основе проекта ВВЭР-1000. Работы по возведению третьего блока АЭС начались в декабре 2012 года. В сентябре 2017-го был завершен пуск реакторной установки. Начало его коммерческой эксплуатации запланировано на февраль 2018 года. Строительство четвертого энергоблока началось в сентябре 2013-го. Его ввод в эксплуатацию намечен на декабрь 2018 года. Стоимость работ по возведению второй очереди АЭС составила €1,3 млрд.

Пятый и шестой блоки Китай начал строить по своему проекту. В настоящее время между Россией и КНР ведутся переговоры о совместном возведении седьмого и восьмого блоков Тяньваньской АЭС.

Научные разработки в сфере атомной энергетики

Конечно, имеются недостатки и опасения, но при этом атомная энергия представляется самой перспективной.

Альтернативные способы получения энергии, за счёт энергии приливов, ветра, Солнца, геотермальных источников и др. в настоящее время имеют не высокий уровнем получаемой энергии, и её низкой концентрацией.

Необходимые виды получения энергии, имеют индивидуальные риски для экологии и туризма, например производство фотоэлектрических элементов, которое загрязняет окружающую среду, опасность ветряных станций для птиц, изменение динамики волн.

Ученые разрабатывают международные проекты ядерных реакторов нового поколения, например ГТ-МГР, которые позволят повысить безопасность и увеличить КПД АЭС.

Россия начала строительство первой в мире плавающей АЭС, она позволяет решить проблему нехватки энергии в отдалённых прибрежных районах страны.

США и Япония ведут разработки мини-АЭС, с мощностью порядка 10-20 МВт для целей тепло и электроснабжения отдельных производств, жилых комплексов, а в перспективе — и индивидуальных домов.

Уменьшение мощности установки предполагает рост масштабов производства. Малогабаритные реакторы создаются с использованием безопасных технологий, многократно уменьшающих возможность утечки ядерного вещества.

Производство водорода

Правительством США принята Атомная водородная инициатива. Совместно с Южной Кореей ведутся работы по созданию атомных реакторов нового поколения, способных производить в больших количествах водород.

INEEL (Idaho National Engineering Environmental Laboratory) прогнозирует, что один энергоблок атомной электростанции следующего поколения, будет производить ежедневно водород, эквивалентный 750000 литров бензина.

Финансируются исследования возможностей производства водорода на существующих атомных электростанциях.

Термоядерная энергетика

Ещё более интересной, хотя и относительно отдалённой перспективой выглядит использование энергии ядерного синтеза.

READ  Технология проверки, наладки и испытания электрических аппаратов

Термоядерные реакторы, по расчётам, будут потреблять меньше топлива на единицу энергии, и как само это топливо (дейтерий, литий, гелий-3), так и продукты их синтеза нерадиоактивны и, следовательно, экологически безопасны.

В настоящее время при участии России, на юге Франции ведётся строительство международного экспериментального термоядерного реактора ITER.

Безопасность

Объекты использования атомной энергии (в том числе ядерные установки, пункты хранения ядерных материалов и радиоактивных веществ, пункты хранения радиоактивных отходов) в соответствии со статьёй 48.1 ГрК РФ относятся к особо опасным объектам.

Надзор за безопасностью российских АЭС осуществляет Ростехнадзор.

Охрана труда регламентируется следующими документами:

  1. Правила охраны труда при эксплуатации тепломеханического оборудования и тепловых сетей атомных станций ОАО «Концерн Энергоатом». СТО 1.1.1.02.001.0673-2006

Ядерная безопасность регламентируется следующими документами:

  1. Общие положения обеспечения безопасности атомных станций. НП-001-15
  2. Правила ядерной безопасности реакторных установок атомных станций. ПБЯ РУ АС-89 (ПНАЭ Г — 1 — 024 — 90)

Радиационная безопасность регламентируется следующими документами:

  1. Санитарные правила проектирования и эксплуатации атомных станций (СП АС-03)
  2. Основные правила обеспечения радиационной безопасности (ОСПОРБ-99/2010)
  3. Правила радиационной безопасности при эксплуатации атомных станций (ПРБ АС-99)
  4. Нормы радиационной безопасности (НРБ-99/2009)
  5. Федеральный закон «О санитарно-эпидемиологическом благополучии населения».

Атомные электростанции России

Балаковская АЭС

Расположена рядом с городом Балаково, Саратовской области, на левом берегу Саратовского водохранилища. Состоит из четырёх блоков ВВЭР-1000, введённых в эксплуатацию в 1985, 1987, 1988 и 1993 годах.

Балаковская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Ежегодно она вырабатывает более 30 миллиардов кВт•ч электроэнергии. В случае ввода в строй второй очереди, строительство которой было законсервировано в 1990-х, станция могла бы сравняться с самой мощной в Европе Запорожской АЭС.

Белоярская АЭС

Белоярская АЭС расположена в городе Заречный, в Свердловской области, вторая промышленная атомная станция в стране (после Сибирской).

На станции были сооружены четыре энергоблока: два с реакторами на тепловых нейтронах и два с реактором на быстрых нейтронах.

В настоящее время действующими энергоблоками являются 3-й и 4-й энергоблоки с реакторами БН-600 и БН-800 электрической мощностью 600 МВт и 880 МВт соответственно.

БН-600 сдан в эксплуатацию в апреле 1980 — первый в мире энергоблок промышленного масштаба с реактором на быстрых нейтронах.

БН-800 сдан в промышленную эксплуатацию в ноябре 2016 г. Он также является крупнейшим в мире энергоблоком с реактором на быстрых нейтронах.

Билибинская АЭС

Расположена рядом с городом Билибино Чукотского автономного округа. Состоит из четырёх блоков ЭГП-6 мощностью по 12 МВт, введённых в эксплуатацию в 1974 (два блока), 1975 и 1976 годах.

Вырабатывает электрическую и тепловую энергию.

Калининская АЭС

Калининская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена на севере Тверской области, на южном берегу озера Удомля и около одноимённого города.

Состоит из четырёх энергоблоков, с реакторами типа ВВЭР-1000, электрической мощностью 1000 МВт, которые были введены в эксплуатацию в 1984, 1986, 2004 и 2011 годах.

4 июня 2006 года было подписано соглашение о строительстве четвёртого энергоблока, который ввели в строй в 2011 году.

Кольская АЭС

Кольская АЭС расположена рядом с городом Полярные Зори Мурманской области, на берегу озера Имандра.

Состоит из четырёх блоков ВВЭР-440, введённых в эксплуатацию в 1973, 1974, 1981 и 1984 годах.
Мощность станции — 1760 МВт.

Курская АЭС

Курская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена рядом с городом Курчатов Курской области, на берегу реки Сейм.

Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1976, 1979, 1983 и 1985 годах.

Мощность станции — 4000 МВт.

Ленинградская АЭС

Ленинградская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена рядом с городом Сосновый Бор Ленинградской области, на побережье Финского залива.

Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1973, 1975, 1979 и 1981 годах.

Мощность станции — 4 ГВт. В 2007 году выработка составила 24,635 млрд кВт•ч.

Нововоронежская АЭС

Расположена в Воронежской области рядом с городом Воронеж, на левом берегу реки Дон. Состоит из двух блоков ВВЭР.

На 85 % обеспечивает Воронежскую область электрической энергией, на 50 % обеспечивает город Нововоронеж теплом.

Мощность станции (без учёта Нововоронежской АЭС-2) — 1440 МВт.

Ростовская АЭС

Расположена в Ростовской области около города Волгодонск. Электрическая мощность первого энергоблока составляет 1000 МВт, в 2010 году подключен к сети второй энергоблок станции.

В 2001—2010 годах станция носила название «Волгодонская АЭС», с пуском второго энергоблока АЭС станция была официально переименована в Ростовскую АЭС.

В 2008 году АЭС произвела 8,12 млрд кВт-час электроэнергии. Коэффициент использования установленной мощности (КИУМ) составил 92,45 %. С момента пуска (2001) выработала свыше 60 млрд кВт-час электроэнергии.

Смоленская АЭС

Расположена рядом с городом Десногорск Смоленской области. Станция состоит из трёх энергоблоков, с реакторами типа РБМК-1000, которые введены в эксплуатацию в 1982, 1985 и 1990 годах.

В состав каждого энергоблока входят: один реактор тепловой мощностью 3200 МВт и два турбогенератора электрической мощностью по 500 МВт каждый.

АЭС «Куданкулам» (Индия)

В 1998 году Росатом и Индийская корпорация по атомной энергии (Nuclear Power Corporation of India Limited, NPCIL) подписали соглашение о строительстве двух энергоблоков АЭС «Куданкулам» с реакторами мощностью 1 тыс. МВт каждый (ВВЭР-1000) в индийском штате Тамилнад. Для этого Индии был выделен кредит в размере около $2,6 млрд. Первый энергоблок был окончательно передан Индии в августе 2016 года, второй 31 марта 2017-го был переведен в режим коммерческой эксплуатации. В качестве генподрядчика выступила компания «Атомстройэкспорт».

В апреле 2014 года между Россией и Индией была достигнута договоренность о сооружении второй очереди АЭС — третьего и четвертого энергоблоков на основе проекта ВВЭР-1000. Предполагаемая стоимость — около $6,4 млрд, из них 3,4 млрд будут получены из российских кредитов. Ввод блоков в эксплуатацию запланирован на 2020-2021 гг.

1 июня 2017 года группа компаний ASE и NPCIL подписали генеральное рамочное соглашение по строительству третьей очереди (пятого и шестого блоков) АЭС «Куданкулам» на основе проекта ВВЭР-1000, а также межправительственный кредитный протокол, необходимый для реализации проекта. По словам министра финансов РФ Антона Силуанова, в 2018 году Индии будет представлен кредит на сумму $4,2 млрд сроком на 10 лет. 31 июля 2017 года стороны заключили контракты на первоочередные проектные работы, рабочее проектирование и поставку основного оборудования для пятого и шестого блоков.

Первая зарубежная АЭС

Атомные электростанции по примеру Обнинской не сразу, но начали создаваться за рубежом. В США решение о строительстве своей атомной электростанции было принято лишь в сентябре 1954 года, и только в 1958 году состоялся пуск АЭС «Шиппингпорт» в Пенсильвании. Мощность атомной электростанции «Шиппингпорт» составила 68 МВт. Зарубежные эксперты называют ее первой коммерческой атомной электростанцией. Строительство атомных электростанций достаточно дорого, АЭС обошлась казне США в 72,5 млн долларов.

Через 24 года, в 1982-м, станция была остановлена, к 1985 году было выгружено топливо и начат демонтаж этого огромного сооружения весом 956 тонн для последующего захоронения.

Атомная энергетика после аварии на Чернобыльской АЭС

1986 год стал роковым для этой отрасли. Последствия техногенной катастрофы оказались настолько неожиданными для человечества, что естественным побуждением стало закрытие многих атомных станций. Количество АЭС во всем мире сократилось. Были остановлены строящиеся по проектам СССР не только отечественные станции, но и зарубежные.

READ  Конденсаторы: назначение, устройство, принцип действия

  • Горьковская АСТ (теплоцентраль);
  • Крымская;
  • Воронежская АСТ.

Список АЭС России, отмененных на этапе проектирования и подготовительных земляных работ:

  • Архангельская;
  • Волгоградская;
  • Дальневосточная;
  • Ивановская АСТ (теплоцентраль);
  • Карельская АЭС и Карельская-2 АЭС;
  • Краснодарская.

Калининская АЭС

Условно включена в четверку самых больших АЭС на российской территории с показателем мощности 4 тысячи мегаватт.

Построена в северной части Тверской области возле населенного пункта Удомля. Располагающаяся прямо возле озера с одноименным названием, она не испытывает перебоев с охлаждающей жидкостью. Конструктивно состоит из 4-х энергетических блоков с реакторами ВВЭР-1000, по 1000 МВт. Они поэтапно вводились в действие в 1984, 1986, 2004 и 2011 годах.

По высоковольтным ЛЭП электричество передается в Тверь и другие большие города – Москву, Санкт-Петербург, Владимир. Такой широкий охват стал реально осуществим, благодаря удачному географическому положению установки.

Энергетические блоки, используемые в АЭС, относятся к самым эффективным и безопасным, что существенно улучшает производительность их работы. Оборудование станции постоянно модернизируется, позволяя увеличить производство электроэнергии и существенно продлить эксплуатационный ресурс энергоблоков. Так, в 2016 году на 3-м энергоблоке был заменен конденсатор турбины. На данных блока такая операция была проведена впервые и успешно завершилась. Калининская АЭС находится в хорошем техническом состоянии и может эксплуатироваться до 2038 года.

Каково состояние атомной энергетики сегодня?

Сегодня существует более 200 предприятий, специалисты которых не покладая рук трудятся над совершенством атомной энергетики России. Поэтому мы уверенно двигаемся вперед в этом направлении: разрабатываем новые модели реакторов и постепенно расширяем производство. Согласно мнению участников Всемирной ядерной ассоциации, сильная сторона России — развитие технологий на быстрых нейронах.

Российские технологии, многие из которых были разработаны компанией «Росатом», высоко ценятся за рубежом за относительно небольшую стоимость и безопасность. Следовательно, у нас достаточно высокий потенциал в атомной отрасли.

Зарубежным партнерам РФ оказывает множество услуг, касающихся рассматриваемой деятельности. К их числу относится:

  • возведение атомных энергоблоков с учетом правил безопасности;
  • поставка ядерного топлива;
  • вывод использованных объектов;
  • подготовка международных кадров;
  • помощь в развитии научных работ и ядерной медицины.

Россия строит большое количество энергоблоков за границей. Успешно были такие проекты, как «Бушер» или «Куданкулам», созданные для иранской и индийской АЭС. Они позволили создавать чистые, безопасные и эффективные источники энергии.

Выработка электроэнергии


Выработка электроэнергии на российских АЭС в 1970—2014 годах, млрд кВт*ч

За 2007 год российскими АЭС было выработано 158,3 млрд кВт·ч, что составило 15,9 % от общей выработки в Единой энергосистеме России.
Объём отпущенной электроэнергии составил 147,7 млрд кВт·ч.

В 2008 году на АЭС было выработано 162,3 млрд кВт•ч электроэнергии.
Объём отпущенной электроэнергии составил 151,57 млрд кВт•ч.

В 2009 году на АЭС было выработано 163,3 млрд кВт•ч электроэнергии, что составило 16 % от общей выработки в Единой энергосистеме России.
Объём отпущенной электроэнергии составил 152,8 млрд кВт·ч.

В 2010 году АЭС России выработали 170,1 млрд кВт•ч электроэнергии, что составило 16,6 % от общей выработки в Единой энергосистеме России.
Объём отпущенной электроэнергии составил 159,4 млрд кВт·ч. После запуска второго энергоблока Волгодонской АЭС в 2010 году, председатель правительства России В. В. Путин озвучил планы доведения атомной генерации в общем энергобалансе России с 16 % до 20-30 %.

В 2011 году российские атомные станции выработали 172,7 млрд кВт•ч, что составило 16,6 % от общей выработки в Единой энергосистеме России.
Объём отпущенной электроэнергии составил 161,6 млрд кВт·ч.

В 2012 году российские атомные станции выработали 177,3 млрд кВт•ч, что составило 17,1 % от общей выработки в Единой энергосистеме России. Объём отпущенной электроэнергии составил 165,727 млрд кВт·ч.

В 2016 году выработка электроэнергии на АЭС составила 196,4 млрд кВт•ч., что составило 18,7% от общей выработки в Единой энергосистеме России.

В 2017 году АЭС России установили абсолютный рекорд выработки – 202,868 млрд кВт.ч.
Таким образом, российские АЭС установили абсолютный рекорд за всю историю существования российской атомной энергетики, приблизившись к абсолютному рекорду по выработке, достигнутому лишь во времена Советского Союза в 1989 году (212,58 млрд кВт.ч, с учетом АЭС Украины, Литвы и Армении)

Доля атомной генерации в общем энергобалансе России в последние пять лет стабильно растёт и по итогам 2017 года составила 19,25 %. Высокое значение атомная энергетика имеет в европейской части России и особенно на северо-западе, где выработка электричества на АЭС достигает 42 %.

В разработках проекта Энергетической стратегии России на период до 2030 г. предусмотрено увеличение производства электроэнергии на атомных электростанциях в 4 раза[источник не указан 364 дня].

Что препятствует развитию атомной энергетики в России?

Развитие атомной энергетики в РФ сталкивается с определенными трудностями. Вот основные из них:

Безопасность

Важно сделать профессиональный вывод конструкции, имеющий надежную внутреннюю систему защиту. Это позволит избежать серьезных аварий по вине неопытных специалистов либо при совершении террористического нападения

Экономичность вырабатываемой энергии. При детальном изучении схемы финансирования атомной энергетики России обнаруживается, что строительство станции и безопасная работа обходятся дороже, чем стоимость энергии, вырабатываемой на угольных и даже газовых станциях. Следовательно, нужно искать варианты минимизации затрат без ущерба качества и безопасности. Снижение выпуска диоксида углерода. Уровень выброса вредных веществ АЭС намного выше электростанций с комбинированным циклом на природном газе. Чтобы избежать негативных последствий от глобального потепления климата на планете, необходимо построить не менее 85 атомных реакторов, уменьшающих выпуск диоксида углерода. Снятие с эксплуатации реакторов на АЭС. В настоящее время обостряется проблема по безопасной утилизации радиоактивных отходов. Приблизительно через 20 лет большинство реакторов выработают свои ресурсы. Их понадобится остановить, а отходы надо надежно утилизировать на длительный срок. Все это потребует немалых финансовых вложений. Опасность использования АЭС для распространения ядерного оружия. При обращении с отработавшим ядерным топливом нередко происходят серьезные сбои. В результате совершенных ошибок террористы могут создать множество грязных ядерных взрывных устройств. Предотвращение усиливающейся угрозы больших государственных затрат. Вложение средств не на развитие систем энергетики. При создании новых реакторов инвестиции не направляются на создание эффективных и менее опасных технологий. Рассматривая энергетическую стратегию, Правительство РФ не видит способов создать действительно экологичную и безопасную систему.

В России атомная энергетика является одним из важных секторов экономики. Успешная реализация разрабатываемых проектов способна помочь развить остальные отрасли, но для этого нужно приложить немало усилий.

Ленинградская АЭС

Ещё один энергетический объект из четверки сооружений на 4000 мегаватт. Эта станция располагается на территории Ленинградской области, неподалеку от города Сосновый Бор с выходом на береговую линию Финского залива. Ее конструкция также состоит из 4-х энерго-блоков РБМК, вводимых в строй по очереди в промежуток с 1973 по 1981 год.

Используемые реакторы относятся к канальным устройствам, кипящего типа. В состав каждого из них входят водяной теплоноситель и графитовый замедлитель. Благодаря уникальным возможностям таких установок, на объекте была успешно внедрена радиационная обработка материалов, налажено производство радиохимических изотопов для медицины и других отраслей промышленности.

Эксплуатационный ресурс для каждого энергоблока изначально устанавливался в 30 лет. В ходе проведенной модернизации и мероприятий по реконструкции, данный показатель удалось увеличить еще на 15 лет.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: